
HTML
Primer & Reference Guide

Copyright
Images, Design & Content: Copyright ©2014 Modem-Help, Ltd..

Trademarks
The following trademarks may be used in this document:

• Apple® and Mac OS®, iPhone®, iPad®, iPod® are registered trademarks of Apple Computer,
Incorporated, registered in the United States and other countries.

• Ethernet™ is a trademark of Xerox Corporation.
• Microsoft®, MS-DOS®, Windows®, Windows NT® and Windows Vista® are either registered

trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.
• Mozilla®, mozilla.org®, Firefox®, Thunderbird®, Bugzilla™, Camino®, Sunbird®, SeaMonkey®, and

XUL™, as well as the Mozilla logo, Firefox logo, Thunderbird logo and the red lizard logo are either
registered trademarks or trademarks of the Mozilla Foundation in the United States and/or other
countries.

• UNIX® is a registered trademark of UNIX System Laboratories, Incorporated.

Other brands and product names may be trademarks or registered trademarks of their respective holders. All
other logos, trademarks and service marks are the property of their respective owners, where marked or not.

This PDF includes HTML entities, © International Organization for Standardization 1986. Permission to copy
in any form is granted for use with conforming SGML systems and applications as defined in ISO 8879,
provided this notice is included in all copies.

This PDF is produced with the assistance of the community, in the expectation of helping users to more
expertly create HTML pages. It has been cross-checked with the W3C DTD & other pages & sites. The
author is only too human, so do proof-check & report back any errors found so that it can improve.

Credits:
For this PDF, you can thank the work of Alex Kemp.
26 August 2013
http://www.modem-help.co.uk/

Contact via forums:
http://forums.modem-help.co.uk/

Download this PDF:
non-modem/zigzag/

Feedback:
HTML Reference PDF thread (Modem-Help forums)

Redistribution:
This PDF may be freely copied and / or re-distributed, on the understanding that the Copyright Notices &
Trademark Acknowledgements on this page, plus the links on this & other pages, are not changed. An
acknowledgement of source plus link back to Modem-Help would also be greatly appreciated.

Version History:
26 August 2013: started
28 April 2014: v1 released:- html 4.01 + css1

2

http://www.w3.org/TR/REC-html40/sgml/dtd.html
http://forums.modem-help.co.uk/
http://www.modem-help.co.uk/
http://www.w3.org/TR/REC-html40/sgml/dtd.html

Contents:
Foreword...9

Primer..10
Create a Web-page..11

Create an empty HTML page..11
Open in a Text Editor..12
Add <html> Tags..13
Add head, body tags..13
Add paragraph tags...13
Add a Title..14
Add a DTD..15
Change your language...16
utf8...16
Text Editor utf8 issues..17
Add some style...17
A StyleSheet added...18
{curly brackets}...18
Getting boxy...19

Reference Guide:- HTML..20
Block-Level Elements...21
Inline Elements..22
Other Elements...23
Generic Attributes 4.01..24

core-attributes:...24
language-attributes:...24
event-attributes:..24

Character Entities...25
html2 + Latin-1 Entities...26
Mathematical, Greek and Symbolic Entities..............................29
Special Entities...33

a – Anchor...34
id:..35
href:..35
name:..35
(within-page links):...35

abbr - Abbreviation..36
acronym – Acronym..37
address - Address..38
applet - Java applet...39
area - Image map region..40
b - Bold text..41
base - Document base url...42

href:..42
absolute v’s relative URI:...42
applet & object:...43

basefont - Base font change..44
bdo - BiDi override..45
big - Large text...46
blockquote - Block quotation...47
body - Document body...48

frameset:..48
br - Line break..49

clear=(left|all|right|none):...49
button - Button..50

type=”...”:..51
name:..51
value:...51
accesskey:...51

caption - Table caption..52

center - Centred block...53
cite - Citation..54
code - Computer code...55
col - Table column...56
colgroup - Table column group..57
dd - Definition description..58
del - Deleted text...59

cite:..59
datetime:..59
title:...59

dfn - Defined term...60
dir - Directory list...61

compact:...61
div - Generic block-level container......................................62
dl - Definition list...63

the whole thing:...63
doctype – Document Preamble..65

Strict vs Transitional...66
dt - Definition term...67
em - Emphasis..68
fieldset - Form control group..69
font - Font change...70
form - Interactive form..71

method:..72
enctype:...72

frame – Frame..73
name:..73

frameset - Frameset..74
how the W3C frames it:...75

h1 - Level-one heading...76
style:...76

h2 - Level-two heading...78
style:...78

h3 - Level-three heading...79
style:...79

h4 - Level-four heading..80
style:...80

h5 - Level-five heading..81
style:...81

h6 - Level-six heading...82
style:...82

head - Document head...83
profile:...83

hr - Horizontal rule...84
html - HTML document...85

version:...85
(optional tags):...85

i - Italic text..86
iframe - Inline frame..87
img - Inline image...88

alt:...88
height:..89
width:...89

input - Form input...90
id=”...”:..91
name=”...”:..91
namespaces:..91
type=”button”:...91
type=”reset”:..91
type=”submit”:...91
type=”checkbox”:...92
type=”radio”:..92
checked:...92
value:...92

type=”file”:...92
accept:..92
type=”hidden”:...93
type=”image”:..93
alt, usemap + src:...93
type=”password”:...93
type=”text”:...93
maxlength + size:..93

ins - Inserted text..95
cite:..95
datetime:..95
title:...95

isindex - Input prompt...96
kbd - Text to be input...97
label - Form field label...98

for:...99
id:..99

legend - Fieldset caption...101
li - List item..102

type:...102
value:..102

link - Document relationship..103
rel:..103
rev:..103
rel=apple-touch-icon:...104
rel=shortcut icon:..104
rel=StyleSheet:...104
rel=alternate stylesheet:...104

map – Image map...105
menu - Menu list..106

compact:..106
meta – Metadata...107

content:..107
name:...107
name=author:..107
name=description:...107
name=keywords:..107
name=robots:..108
http-equiv:...108
http-equiv=Content-Type:..108
http-equiv=Content-Script-Type:.......................................109
http-equiv=Content-Style-Type:..109
http-equiv=Refresh:...109

noframes - Frames alternate content.....................................110
how to hack-off your users:...110
a guide to content:...110
noframes in 4 Transitional:...110

noscript - Alternate script content.....................................111
object – Object...112
ol - Ordered list...113

type:...113
optgroup - Option group...114

label:..115
option - Menu option..116

selected:...116
value:..116

p – Paragraph...117
param - Object parameter..118

id:...118
name:...118

pre - Pre-formatted text..119
width:..119

q - Short Quotation...120
s - Strike-through text...121

samp - Sample output..122
script - Client-side script...123
select - Option selector..124

multiple:...124
name:...124
size:...124

small - Small text..125
span - Generic inline container...126
strike - Strike-through text..127
strong - Strong emphasis..128
style - Embedded style sheet..129

media:..129
title:..129
type:...130

sub – Subscript...131
sup – Superscript...132
table – Table...133

align:..134
bgcolor:..134
border:...134
frame:..134
cellpadding:..134
cellspacing:..134
width:..134
The whole thing:..135

tbody - Table body..137
td - Table data cell..138

abbr:...139
axis:...139
headers:..139
scope:..139
colspan:..139
rowspan:..139

textarea - Multi-line text input..140
cols:...141
rows:...141

tfoot - Table foot..142
th - Table header cell..143

abbr:...144
axis:...144
headers:..144
scope:..144
colspan:..144
rowspan:..144

thead - Table head..145
title - Document title..146
tr - Table row..147
tt - Teletype text..148
u - Underlined text...149
ul - Unordered list...150

compact:..150
type:...150
The whole thing:..151

var – Variable..152

Reference Guide:- CSS..153
Introduction..154

Attaching Style/StyleSheets to a html document........................155
css Layout Model..167

Box Properties..182
border properties:..182
border-width properties:..182
margin properties:..182
padding properties:...182

Classification Properties...183
Colour & Background Properties..184

Notes:..184
Font Properties...185
Pseudo-classes & Pseudo-elements..186
Text Properties...187
Units...188

Color Units:..188
Length Units:...190
Percentage Units:...191
URLs:...191

Property Value Syntax...192
CSS Properties A – Z..193

1st-line pseudo-element...194
1st-letter pseudo-element...195
Anchor pseudo-classes...196
background..197
background-attachment...198
background-color..199
background-image..200
background-position...201
background-repeat...203
border..204
border-bottom...205
border-bottom-width...206
border-color..207
border-left...208
border-left-width...209
border-right..210
border-right-width..211
border-style..212
border-top..213
border-top-width..214
border-width..215
clear...216
color...217
display...218
float...219
font..220
font-family...221
font-size...222
font-style..223
font-variant..224
font-weight...225
height..226
letter-spacing..227
line-height...228
list-style..229
list-style-image..230
list-style-postion..231
list-style-type...232
margin..233
margin-bottom...234
margin-left...235
margin-right..236
margin-top..237
padding...238
padding-bottom..239
padding-left..240
padding-right...241
padding-top...242
text-align..243
text-decoration...244
text-indent...245

text-transform..246
vertical-align..247
width...248
white-space...249
word-spacing..250

Miscellany..251
Quirks Mode...252
Column Layouts, css1..254
Text grids using only css...255
Accurate Superscript & Subscripts.....................................257
Google Guidelines for html & css......................................260

Foreword

Foreword

In August 2013 Carly & Martin—the guiding minds & hands behind the regeneration of the
ZigZag fields in St. Anns—took everyone into (what used to be, now long abandoned)
The Beacon public house & said “If we want, this can be a community space”. My thought
was:- ‘what could I do?’...

The previous Christmas I had given my grandchildren a cut-out from The Times (the
London newspaper). It was an ‘easy-howto-code-HTML’. To my surprise Micaela was
enthusiastic; Mickey was 12 and had been into ballet since she was 3; she was the last
person that I thought would want to know how to code HTML. I clearly needed to update my
thinking.

Back at the The Beacon I asked the local kids:- would they be interested in learning how to
code? It did seem that they were more interested in learning “How to hack”, but at least
one adult was also enthusiastic, so I put my brains into action, and this PDF is the first
result.

I could not find a comprehensive reference for HTML nor CSS so decided to produce my own.
This first version is HTML4.01 + CSS1. From one point of view that is prehistoric but, as
HTML5 isn’t even ratified yet, it is also the most up-to-date HTML that we have got. CSS2,3
will follow in a later version.

I hope that you find it useful.

Alex Kemp
27 April 2014

HTML Primer & Reference Guide 9

Primer

Primer

HTML Primer & Reference Guide 10

Primer

Create a Web-page

You will need:
1. A plain-text Editor
2. A web Browser.

Any text editor will do, and any browser, under any OS; you do NOT need to be connected
to the Internet. The examples below are in TextPad + Firefox v23 under Windows XP.

Create an empty HTML page

There are many ways to do this; the
picture at right shows just one.

Start with a click from the right mouse-
button on the Desktop (or in an Explorer
window) under Windows XP.

Pressing <Enter> will give a new
document called ‘New Text Document.txt’.

Now change the document name to:
 ‘<your-name>.html’.

Windows will now complain, because you
have changed the document name from
‘something.txt’ to ‘something.html’.

You are allowed to swear (but only under
your breath if others are in the room).

Press <Yes>.

Here the new file has been put
somewhere easy to find:

HTML Primer & Reference Guide 11

Primer

Open in a Text Editor

Type in the words as shown at
right (‘Hello World!’) – notice
that each word is on a separate
line (you can also try putting
more words in, and more than
one space between each word)

Save the file, then open in a Web
Browser.

(TextPad has a ‘View|In Web Browser’
menu option, whilst Firefox has a
‘File|Open File...’ menu option)

Well done! That is your very first
Web Page (that was easier than
you thought).

We have some distance to go, yet.
If you right-click in the Firefox
window & choose ‘View Page Info’
you will see the dialog as at right;
the important line at this moment
is “Render Mode: Quirks mode”.
We do not want that in any
situation, no sir, but it will be a
little while before it changes.

HTML Primer & Reference Guide 12

Primer

Add <html> Tags

The ‘m’ in ‘html’ stands for
“markup”, and as at right you
should add a set of ‘html’ markup
tags to your document.

These tags tell the browser that
what follows is HTML (an ‘xml’
tag would indicate the XML
language, etc.).

(you can save these changes &
refresh the Browser, but there
will be zero change at this point)

Add head, body tags

Each HTML document should
contain both a HEAD plus a
BODY section.

The <head> tags immediately
follow the opening html tag,
whilst the <body> tags surround
the text entered earlier.

Add paragraph tags

These are placed to surround the
body-text entered originally.

HTML Primer & Reference Guide 13

Primer

Add a Title

Although most of the sections
within the HTML head are not
normally directly seen, the title
section is the major exception to
this rule.

Once again, save the text file &
refresh the Browser window:

how to refresh:
• press ‘f5’ key, or
• press circ arrow

(far right, address-bar)

how to force-refresh:
• press <Ctrl> + ‘f5’ key

(both keys at same time),
or

• press <Shift> + circ arrow
(both keys at same time)

(the difference between ‘refresh’
& ‘force-refresh’ is that the latter
does not allow the local Browser
cache to be used)

HTML Primer & Reference Guide 14

Primer

Add a DTD

This is a Document Type
Declaration (DTD), and it
declares to the Browser’s parser
as to which specific type of
XML/SGML document this is (an
HTML document is one of the
Standard Generalized Markup
Language (SGML) family of
markup languages).

If you save the file, then refresh
the Browser you will see a small
change in the window (the text
moves down a little). The default
Style Sheet is the reason for the
text movement – that will be
explained later.

Importantly, the Page Info has
also finally changed. According to
this statement, page display for
all elements should now be
perfectly reliable (“Render Mode:
Standards compliance mode”).
Hooray!

Now look at the next line:
(“Encoding: windows-1252”).
That is because TextPad was set
to save the file as:

• Code set: ANSI
• File type: PC

...plus my Windows XP is set for
the windows-1252 code-page
(“ANSI Latin 1; Western European (Windows)”) (yours may well be different).

Well, that all sounds very complicated, and it is! What is easy to understand is that saving
in a Windows’ format may be difficult for users of Linux, Mac & other computers, plus
saving in a “Western European” format may be difficult for people in a different region.
Which they are, and it is easy to fix both, so let’s now do something about that.

HTML Primer & Reference Guide 15

http://msdn.microsoft.com/en-us/library/windows/desktop/dd317756(v=vs.85).aspx

Primer

Change your language

You can see at right that we have
added ‘ lang=”en”’ to the html
element (which defines the
default language for the whole
document).

We have also added a mysterious
meta element in the head; this
defines the charset of the content
to be ‘utf-8’. More on that later.
The meta statement is on one line
(2 in the screen-shot), and 2
actual lines should also be fine in the html.

The Page Information has now
also changed; the ‘Encoding’ is
now ‘UTF-8’, and Firefox also
shows us the Meta info from the
file.

I also changed the file format
when I saved it in TextPad to be
‘UNIX’ and ‘UTF-8’. The last one
does not actually change anything
to the file nor it’s display (for the
geeks: all the current characters
are identical to 7-bit ASCII, which
itself is identical to those same
characters in UTF8). The first
makes the file a little bit smaller
(geeks: line-endings change from
‘<CR><LF>’ to just ‘<LF>’).

UTF8

UTF8 is a rather wonderful & clever charset that will let you write any character from any
language in the world (no kidding). On the up-side, it means that, from now on, you can
write in your own language (content-only: all the HTML elements are US-ASCII, and no
other charset must be used for them), and that language can be any of the hundreds of
languages that exist on the surface of this planet (and one or two that do not – yes,
Klingons, I’m looking at you). Importantly, in 2008 utf-8 became the most-used charset on
the web (as reported by Google), which means that your web-work will be future-
proofed. All modern browsers can read & display utf-8 correctly, often not true for other
applications on the OS, and especially under Windows.

HTML Primer & Reference Guide 16

http://googleblog.blogspot.co.uk/2010/01/unicode-nearing-50-of-web.html
http://googleblog.blogspot.co.uk/2010/01/unicode-nearing-50-of-web.html

Primer

Text Editor UTF8 issues

The main downside is that you have to make sure that your text-editor will allow you to
write & display in plain-text utf-8. It is mostly a setup issue, though Windows users may
have problems (TextPad does not handle utf-8 properly) (I shall only be producing ASCII
text). Another feature to beware of is to make sure that you are using a Plain-Text UTF8
editor. Many editors—such as the one that I am producing this PDF on—will introduce
codes into the text (notice that all the “quotations” use curly quotes, as just one example)
(UTF8 has curly quotes but your editor may not be using them). This is also often a setup
issue, and can sometimes be fixed by a plain-text Save option.

The final point to note here is that nothing has changed in the browser display due to our
changes. Our future options have opened up, but nothing else has changed.

Add some style

What we have done so far is good but a little... dull. And I’m not talking just about the
content (that is up to you) – it is how it looks; the presentation of that content. In a (HTML)
word, the style.

10 or 20 years ago you would have been advised at this point to begin littering your html
markup with FONT & COLOR attributes. No longer. This is the 21st Century, and today we do it
with style.

We need 2 additions to the html
file in this, your first web-page
(can you spot them?):-

1. Another of those mystery
meta elements, which
always go in the head.
This one is to declare the
‘Content-Style-Type’ type.

2. The file that will provide
StyleSheet information for
the entire file, which is
done with a link element
(also in the head).

Have you noticed what’s missing? Well, yes, it’s a good idea to also have the StyleSheet file
in place; nothing will happen to the display until it is there. You may think at first that
there is little that we can do with this file as it currently stands; after all, there is only
“Hello World!” inside of a p element. But you would be wrong! (you have forgotten the
body , which is always there—even if not not defined—and that governs all sorts of
things).

HTML Primer & Reference Guide 17

Primer

A StyleSheet added

Be warned! StyleSheets can become compulsive, because they are so much fun! The trick
with StyleSheets is to first get one with all the style for all the elements that you may use—
and one that you like, obviously—and put the commands into the head to load it, and then
forget it. Otherwise, you can spend hours & hours & hours messing about. Or perhaps
that’s just me... Save the StyleSheet below as plain-text in the same dir as your html file.

This one starts with a comment.
Comments begin with a slash dot
(‘/*’)and finish with a
dot slash (‘*/’). Everything
in between—including tabs, new-
lines and the slash dot & dot
slash is removed by the browser
from the stylesheet before use.

Next is the body, and then the p
element style code. Then follow
some elements that we do not yet
have in our page but may do.

Here is some brief info on
StyleSheets to help you begin to
play with this one:-

{curly brackets}

A pair of curly brackets (‘{}’)
following an element mean that
all the style-statements between
the brackets apply to that
element. The semi-colon (‘;’) at
the end of each statement is
required; the newlines & spaces
are optional.

2 elements together (eg
‘p input’) apply only when the
second one is contained inside
the first (an input inside a p
element). Then, those style
statements override both any p
style and any bare input style.
Comma-separated elements
(‘p input,option’) means style
applies to both “‘p input’ +
‘p option’”. Be warned: style
can get really complicated.

HTML Primer & Reference Guide

/* style.css
StyleSheet for html Primers

 Alex Kemp
*/
body {

width: 100%;
background: #ffffe8; /* ne6mac default is grey

*/
color: #000000;
font-family: helvetica, sans-serif;
margin: 0; /* ie default !=0 */
padding: 0; /* Opera default !=0 */

}
p {

font-size: 1.0em;
line-height: 1.8em;
margin: 1.2px 0px 1.2px 0px;

}
p input,option,select,textarea { /* iepc textarea
always in serif monospace font, regardless */

font-size: 1.0em;
line-height: 1.3em;

}
div {

background: white;
color: black;
padding: 0 3px;

}
body div {

border: 0.74em solid #ffffe8;
}
/*typography*/
a {

background: none transparent;
TEXT-DECORATION: none;

}
a:link { color: #0000ff; }
a:visited { color: #e105ba; }
a:active { color: #ff0000; }
a:hover { color: #ff0000; TEXT-
DECORATION: underline; }
acronym { /* borrowed from php.net */

border-bottom: 1px dashed #00cc00;
}
/* -- Now instructions purely for printing -
essentially, turn background to white -- */
@media print {

body {
background: white;
color: #000000;

}
body div {

border: 0.74em solid white;
}

18

Primer

Getting boxy...

The W3C—the folks responsible for specifying both HTML and STYLE—have specified a
‘Box Model’ that is, frankly, nuts. Well, it’s all a touch silly; Microsoft tried to fix it with
Internet Explorer 5 on the PC, but no-one else would accept that, and now we are all
stuck with it. Let’s see if I can make sense of it for you...

Let’s imagine my grandchildren
have decided to post me a present
(yes please!) and here it is: a
green box with something nice in
the middle. Sensibly, they have
put it in a brown cardboard box
with lots of protective wrapping.

Now, this is how a StyleSheet
specifies the green box in the
middle; it says that the green box
has a border, a margin & a padding (plus a width & height):

• border: The border is the green of the green-box itself. It has:
◦ width (a length unit, or: thin | medium | thick)
◦ style (none | dotted | dashed | solid | double | groove | ridge | inset | outset)
◦ color

• margin: Margin is the (pink) space outside the green box, between it and
the brown box that contains it. It has:

◦ (just a value) (a length unit)
• padding: Padding is the (blue) space inside the green box, between it &

the yellow contents. It has:
◦ (just a value) (a length unit)

That all seems perfectly reasonable, and you are probably wondering why I called the W3C
‘Box Model’ “nuts”. The answer comes when I ask you a question:

• What is the width of the green box?

If your answer is: “the distance from the left to the right of the outside of the green box”, or
perhaps if you are trying to be clever: “the width of the inside of the brown box minus the
green-box margin” then I would agree with you. But the W3C does not. The W3C answer
is:

• The width of the contents (the yellow space).

Thus, for ‘green-box width:’ you would put the length of the content-space. For the W3C
“padding and border are to be added to the width” in order to find the dimensions of the
green box. One of these days I may get over that, but for the last 15+ years I’ve thought
that they are nuts. However, none of us have any choice, we must all go nuts the W3C way.

PS
The brown box also has a border, a margin & a padding, but I’ve ignored all that so far (as
if they are all zero) to try to give everyone a chance to first understand the basic principles.

HTML Primer & Reference Guide

hello alex

19

http://tantek.com/CSS/Examples/boxmodelhack.html
http://www.glish.com/css/hacks.asp

Reference Guide:- HTML

Reference Guide:- HTML

HTML Primer & Reference Guide 20

Reference Guide:- HTML

Block-Level Elements

Description: Most of the elements permitted within the html body are designated to have a
Content Model that is either Block-Level or Inline. That affects how a browser
will render them upon the canvas of the display device (a monitor, mobile,
projector, etc.).

A Block-Level element is rendered according to the W3C Box Model. In brief,
it normally begins upon a newline, but see the Box Model for full details.

Elements:
address blockquote

button block or inline; when inline must NOT contain block-level elements

caption

dd (can contain block-level elements)

del block or inline; when inline must NOT contain block-level elements

div

dl (can contain block-level elements)

dt fieldset form

frameset (can contain block-level elements)

h1 h2 h3

h4 h5 h6

hr

ins block or inline; when inline must NOT contain block-level elements

legend li

map block or inline; when inline must NOT contain block-level elements

noframes noscript

object block or inline; when inline must NOT contain block-level elements

ol p pre

script block or inline; when inline must NOT contain block-level elements

table

tbody (can contain block-level elements)

td (can contain block-level elements)

tfoot (can contain block-level elements)

th (can contain block-level elements)

thead (can contain block-level elements)

tr (can contain block-level elements)

ul

HTML Primer & Reference Guide 21

Reference Guide:- HTML

Inline Elements

Description: Most of the elements permitted within the html body are designated to have a
Content Model that is either Block-Level or Inline. That affects how a browser
will render them upon the canvas of the display device (a monitor, mobile,
projector, etc.).

An Inline element is rendered as part of the flow of text, with the element
beginning at the next character position within that flow.

Elements:
a abbr acronym

b bdo big

br

button block or inline; when inline (within another inline element or a p)
must NOT contain block-level elements

cite code

del block or inline; when inline (within another inline element or a p)
must NOT contain block-level elements

dfn em img

input

ins block or inline; when inline (within another inline element or a p)
must NOT contain block-level elements

kbd label

map block or inline; when inline (within another inline element or a p)
must NOT contain block-level elements

object block or inline; when inline (within another inline element or a p)
must NOT contain block-level elements

optgroup option q

samp

script block or inline; when inline (within another inline element or a p)
must NOT contain block-level elements

select small span

strong sub sup

textarea tt u

var

HTML Primer & Reference Guide 22

Reference Guide:- HTML

Other Elements

Description: There are some in every gathering!

Most HTML elements are either Block-Level, Inline or can be either; this page
gathers together those that are neither. Most of this miscellany are elements
that, for one reason or another, are not rendered directly upon the canvas.

Elements:
area

base

body

col

colgroup

doctype

frame

head

html

link

meta

param

style

title

HTML Primer & Reference Guide 23

Reference Guide:- HTML

Generic Attributes 4.01

Description: These attributes are (mostly) available for every element. See the individual
element page for specifics.

core-attributes:

id document-wide unique id (new to HTML4)

class space-separated list of classes (new to HTML4)

style associated style info (new to HTML4)

title advisory title
(normally rendered in a visual browser as a ‘tooltip’)

language-attributes:

lang 2-char language codes

dir (ltr|rtl) direction for weak/neutral text

event-attributes:

onclick a pointer button was clicked

ondblclick a pointer button was double clicked

onmousedown a pointer button was pressed down

onmouseup a pointer button was released

onmouseover a pointer was moved onto

onmousemove a pointer was moved within

onmouseout a pointer was moved away

onkeypress a key was pressed and released

onkeydown a key was pressed down

onkeyup a key was released

HTML Primer & Reference Guide 24

Reference Guide:- HTML

Character Entities

Description: These are academic if you use the UTF-8 charset.

HTML2.0 introduced ‘"’, ‘&’, ‘<’ and ‘>’. HTML3.2 added Latin-1
entities; these are US-ASCII (7-bit character) short-codes to represent 8-bit
characters in the Latin-1 charset. HTML4 extended those with “Mathematical, Greek
and Symbolic” + “Special” entities. Browser support was always patchy (apart from
the original HTML2 foursome), and now UTF-8 allows entry of any character directly
(but you may need to know what these entities are).

Entity tables:
• HTML2 + Latin-1
• Mathematical, Greek and Symbolic
• Special

Notes for the tables:
• ‘Alpha’

The entity representation is (case-sensitive):

Α

So, prepend ‘&’ and append ‘;’. An example is:

(a non-breaking space)

• ‘Dec’
(decimal) The entity representation is:

&#Dec;

So, prepend ‘&#’ and append ‘;’. An example is:

(a non-breaking space)

• ‘Hex’
(hexadecimal) The entity representation is (case-insensitive):

&#xHex;

So, prepend ‘&#x’ and append ‘;’. An example is:

(a non-breaking space)

‘ ’ == ‘ ’ == ‘U+00A0’ (the unicode/UTF-8 code)

HTML Primer & Reference Guide 25

Reference Guide:- HTML
HTML2 + Latin-1 Entities

Entity
Name Glyph

Alpha Dec Hex

quot 034 0022 quotation mark "

amp 038 0026 ampersand &

lt 060 003c left angle-bracket (‘less than’ symbol) <

gt 062 003e right angle-bracket (‘greater than’ symbol) >

nbsp 160 00a0 no-break space = non-breaking space

iexcl 161 00a1 inverted exclamation mark ¡

cent 162 00a2 cent sign ¢

pound 163 00a3 pound sign £

curren 164 00a4 currency sign ¤

yen 165 00a5 yen sign = yuan sign ¥

brvbar 166 00a6 broken bar = broken vertical bar ¦

sect 167 00a7 section sign §

uml 168 00a8 diaeresis = spacing diaeresis ¨

copy 169 00a9 copyright sign ©

ordf 170 00aa feminine ordinal indicator ª

laquo 171 00ab left-pointing double angle quotation mark = left pointing guillemet «

not 172 00ac not sign ¬

shy 173 00ad soft hyphen = discretionary hyphen

reg 174 00ae registered sign = registered trade mark sign ®

macr 175 00af macron = spacing macron = overline = APL overbar ¯

deg 176 00b0 degree sign °

plusmn 177 00b1 plus-minus sign = plus-or-minus sign ±

sup2 178 00b2 superscript two = superscript digit two = squared ²

sup3 179 00b3 superscript three = superscript digit three = cubed ³

acute 180 00b4 acute accent = spacing acute ´

micro 181 00b5 micro sign µ

para 182 00b6 pilcrow sign = paragraph sign ¶

middot 183 00b7 middle dot = Georgian comma = Greek middle dot ·

cedil 184 00b8 cedilla = spacing cedilla ¸

sup1 185 00b9 superscript one = superscript digit one ¹

ordm 186 00ba masculine ordinal indicator º

raquo 187 00bb
right-pointing double angle quotation mark =
right pointing guillemet

»

frac14 188 00bc vulgar fraction one quarter = fraction one quarter ¼

frac12 189 00bd vulgar fraction one half = fraction one half ½

frac34 190 00be vulgar fraction three quarters = fraction three quarters ¾

iquest 191 00bf inverted question mark = turned question mark ¿

Agrave 192 00c0 latin capital letter A with grave = latin capital letter A grave À

Aacute 193 00c1 latin capital letter A with acute Á

HTML Primer & Reference Guide 26

Reference Guide:- HTML
Entity

Name Glyph
Alpha Dec Hex

Acirc 194 00c2 latin capital letter A with circumflex Â

Atilde 195 00c3 latin capital letter A with tilde Ã

Auml 196 00c4 latin capital letter A with diaeresis Ä

Aring 197 00c5 latin capital letter A with ring above = latin capital letter A ring Å

AElig 198 00c6 latin capital letter AE = latin capital ligature AE Æ

Ccedil 199 00c7 latin capital letter C with cedilla Ç

Egrave 200 00c8 latin capital letter E with grave È

Eacute 201 00c9 latin capital letter E with acute É

Ecirc 202 00ca latin capital letter E with circumflex Ê

Euml 203 00cb latin capital letter E with diaeresis Ë

Igrave 204 00cc latin capital letter I with grave Ì

Iacute 205 00cd latin capital letter I with acute Í

Icirc 206 00ce latin capital letter I with circumflex Î

Iuml 207 00cf latin capital letter I with diaeresis Ï

ETH 208 00d0 latin capital letter ETH Ð

Ntilde 209 00d1 latin capital letter N with tilde Ñ

Ograve 210 00d2 latin capital letter O with grave Ò

Oacute 211 00d3 latin capital letter O with acute Ó

Ocirc 212 00d4 latin capital letter O with circumflex Ô

Otilde 213 00d5 latin capital letter O with tilde Õ

Ouml 214 00d6 latin capital letter O with diaeresis Ö

times 215 00d7 multiplication sign ×

Oslash 216 00d8 latin capital letter O with stroke = latin capital letter O slash Ø

Ugrave 217 00d9 latin capital letter U with grave Ù

Uacute 218 00da latin capital letter U with acute Ú

Ucirc 219 00db latin capital letter U with circumflex Û

Uuml 220 00dc latin capital letter U with diaeresis Ü

Yacute 221 00dd latin capital letter Y with acute Ý

THORN 222 00de latin capital letter THORN Þ

szlig 223 00df latin small letter sharp s = ess-zed ß

agrave 224 00e0 latin small letter a with grave = latin small letter a grave à

aacute 225 00e1 latin small letter a with acute á

acirc 226 00e2 latin small letter a with circumflex â

atilde 227 00e3 latin small letter a with tilde ã

auml 228 00e4 latin small letter a with diaeresis ä

aring 229 00e5 latin small letter a with ring above = latin small letter a ring å

aelig 230 00e6 latin small letter ae = latin small ligature ae æ

ccedil 231 00e7 latin small letter c with cedilla ç

egrave 232 00e8 latin small letter e with grave è

eacute 233 00e9 latin small letter e with acute é

ecirc 234 00ea latin small letter e with circumflex ê

euml 235 00eb latin small letter e with diaeresis ë

igrave 236 00ec latin small letter i with grave ì

HTML Primer & Reference Guide 27

Reference Guide:- HTML
Entity

Name Glyph
Alpha Dec Hex

iacute 237 00ed latin small letter i with acute í

icirc 238 00ee latin small letter i with circumflex î

iuml 239 00ef latin small letter i with diaeresis ï

eth 240 00f0 latin small letter eth ð

ntilde 241 00f1 latin small letter n with tilde ñ

ograve 242 00f2 latin small letter o with grave ò

oacute 243 00f3 latin small letter o with acute ó

ocirc 244 00f4 latin small letter o with circumflex ô

otilde 245 00f5 latin small letter o with tilde õ

ouml 246 00f6 latin small letter o with diaeresis ö

divide 247 00f7 division sign ÷

oslash 248 00f8 latin small letter o with stroke = latin small letter o slash ø

ugrave 249 00f9 latin small letter u with grave ù

uacute 250 00fa latin small letter u with acute ú

ucirc 251 00fb latin small letter u with circumflex û

uuml 252 00fc latin small letter u with diaeresis ü

yacute 253 00fd latin small letter y with acute ý

thorn 254 00fe latin small letter thorn þ

yuml 255 00ff latin small letter y with diaeresis ÿ

HTML Primer & Reference Guide 28

Reference Guide:- HTML
Mathematical, Greek and Symbolic Entities

Entity
Name Glyph

Alpha Dec Hex

fnof 402 0192 latin small f with hook = function = florin ƒ

Alpha 913 0391 Greek capital letter alpha Α

Beta 914 0392 Greek capital letter beta Β

Gamma 915 0393 Greek capital letter gamma Γ

Delta 916 0394 Greek capital letter delta Δ

Epsilon 917 0395 Greek capital letter epsilon Ε

Zeta 918 0396 Greek capital letter zeta Ζ

Eta 919 0397 Greek capital letter eta Η

Theta 920 0398 Greek capital letter theta Θ

Iota 921 0399 Greek capital letter iota Ι

Kappa 922 039a Greek capital letter kappa Κ

Lambda 923 039b Greek capital letter lamda Λ

Mu 924 039c Greek capital letter mu Μ

Nu 925 039d Greek capital letter nu Ν

Xi 926 039e Greek capital letter xi Ξ

Omicron 927 039f Greek capital letter omicron Ο

Pi 928 03a0 Greek capital letter pi Π

Rho 929 03a1 Greek capital letter rho Ρ

930 03a2 (n/a)

Sigma 931 03a3 Greek capital letter sigma Σ

Tau 932 03a4 Greek capital letter tau Τ

Upsilon 933 03a5 Greek capital letter upsilon Υ

Phi 934 03a6 Greek capital letter phi Φ

Chi 935 03a7 Greek capital letter chi Χ

Psi 936 03a8 Greek capital letter psi Ψ

Omega 937 03a9 Greek capital letter omega Ω

alpha 945 03b1 Greek small letter alpha α

beta 946 03b2 Greek small letter beta β

gamma 947 03b3 Greek small letter gamma γ

delta 948 03b4 Greek small letter delta δ

epsilon 949 03b5 Greek small letter epsilon ε

zeta 950 03b6 Greek small letter zeta ζ

eta 951 03b7 Greek small letter eta η

theta 952 03b8 Greek small letter theta θ

iota 953 03b9 Greek small letter iota ι

kappa 954 03ba Greek small letter kappa κ

lambda 955 03bb Greek small letter lamda λ

mu 956 03bc Greek small letter mu μ

nu 957 03bd Greek small letter nu ν

xi 958 03be Greek small letter xi ξ

HTML Primer & Reference Guide 29

Reference Guide:- HTML
Entity

Name Glyph
Alpha Dec Hex

omicron 959 03bf Greek small letter omicron ο

pi 960 03c0 Greek small letter pi π

rho 961 03c1 Greek small letter rho ρ

sigmaf 962 03c2 Greek small letter final sigma ς

sigma 963 03c3 Greek small letter sigma σ

tau 964 03c4 Greek small letter tau τ

upsilon 965 03c5 Greek small letter upsilon υ

phi 966 03c6 Greek small letter phi φ

chi 967 03c7 Greek small letter chi χ

psi 968 03c8 Greek small letter psi ψ

omega 969 03c9 Greek small letter omega ω

thetasym 977 03d1 Greek small letter theta symbol ϑ

upsih 978 03d2 Greek upsilon with hook symbol ϒ

piv 982 03d6 Greek pi symbol ϖ

bull 8226 2022 bullet = black small circle •

hellip 8230 2026 horizontal ellipsis = three dot leader …

prime 8242 2032 prime = minutes = feet ′

Prime 8243 2033 double prime = seconds = inches ″

oline 8254 203e overline = spacing overscore ‾

frasl 8260 2044 fraction slash ⁄

image 8465 2111 blackletter capital I = imaginary part ℑ

weierp 8472 2118 script capital P = power set = Weierstrass p ℘

real 8476 211c blackletter capital R = real part symbol ℜ

trade 8482 2122 trade mark sign ™

alefsym 8501 2135 alef symbol = first transfinite cardinal ℵ

larr 8592 2190 leftwards arrow ←

uarr 8593 2191 upwards arrow ↑

rarr 8594 2192 rightwards arrow →

darr 8595 2193 downwards arrow ↓

harr 8596 2194 left right arrow ↔

8597 2195 ↕

8598 2196 ↖

8599 2197 ↗

8600 2198 ↘

8601 2199 ↙

8624 21b0 ↰

8625 21b1 ↱

8626 21b2 ↲

8627 21b3 ↳

8628 21b4 ↴

crarr 8629 21b5 downwards arrow with corner leftwards = carriage return ↵

larr 8656 21d0 leftwards double arrow ⇐

uarr 8657 21d1 upwards double arrow ⇑

HTML Primer & Reference Guide 30

Reference Guide:- HTML
Entity

Name Glyph
Alpha Dec Hex

rarr 8658 21d2 rightwards double arrow ⇒

darr 8659 21d3 downwards double arrow ⇓

harr 8650 21d4 left right double arrow ⇔

8651 21d5 ⇕

8652 21d6 ⇖

8653 21d7 ⇗

8654 21d8 ⇘

8655 21d9 ⇙

forall 8704 2200 for all ∀

8705 2201 ∁

part 8706 2202 partial differential ∂

exist 8707 2203 there exists ∃

8708 2204 ∄

empty 8709 2205 empty set = null set = diameter ∅

8710 2206 ∆

nabla 8711 2207 nabla = backward difference ∇

isin 8712 2208 element of ∈

notin 8713 2209 not an element of ∉

8714 220a ∊

ni 8715 220b contains as member ∋

8716 220c ∌

8717 220d ∍

8718 220e ∎

prod 8719 220f n-ary product = product sign ∏

8720 2210 ∐

sum 8721 2211 n-ary sumation ∑

minus 8722 2212 minus sign −

8723 2213 ∓

8724 2214 ∔

8725 2215 ∕

8726 2216 ∖

lowast 8727 2217 asterisk operator ∗

8728 2218 ∘

8729 2219 ∙

radic 8730 221a square root = radical sign √

8731 221b ∛

8732 221c ∜

prop 8733 221d proportional to ∝

infin 8734 221e infinity ∞

8735 221f ∟

ang 8736 2220 angle ∠

8737 2221 ∡

8738 2222 ∢

HTML Primer & Reference Guide 31

Reference Guide:- HTML
Entity

Name Glyph
Alpha Dec Hex

8739 2223 ∣

8740 2224 ∤

8741 2225 ∥

8742 2226 ∦

and 8743 2227 logical and = wedge ∧

or 8744 2228 logical or = vee ∨

cap 8745 2229 intersection = cap ∩

cup 8746 222a union = cup ∪

int 8747 222b integral ∫

there4 8756 2234 therefore ∴

8757 2235 ∵

8759 2237 ∷

sim 8764 223c tilde operator = varies with = similar to ∼

cong 8773 2245 approximately equal to ≅

asymp 8776 2248 almost equal to = asymptotic to ≈

ne 8800 2260 not equal to ≠

equiv 8801 2261 identical to ≡

8802 2262 not identical to ≢

le 8804 2264 less-than or equal to ≤

ge 8805 2265 greater-than or equal to ≥

sub 8834 2282 subset of ⊂

sup 8835 2283 superset of ⊃

nsup 8836 2284 not a subset of ⊄

8837 2285 not a superset of ⊅

sube 8838 2286 subset of or equal to ⊆

supe 8839 2287 superset of or equal to ⊇

8840 2288 not a subset of or equal to ⊈

8841 2289 not a superset of or equal to ⊉

oplus 8853 2295 circled plus = direct sum ⊕

otimes 8855 2297 circled times = vector product ⊗

perp 8869 22a5 up tack = orthogonal to = perpendicular ⊥

sdot 8901 22c5 dot operator ⋅

lceil 8968 2308 left ceiling = apl upstile ⌈

rceil 8869 2309 right ceiling ⌉

lfloor 8870 230a left floor = apl downstile ⌊

rfloor 8871 230b right floor ⌋

lang 9001 2329 left-pointing angle bracket = bra (n/a)

rang 9002 232a right-pointing angle bracket = ket (n/a)

loz 9674 25ca lozenge ◊

spades 9824 2660 black spade suit ♠

clubs 9827 2663 black club suit = shamrock ♣

hearts 9829 2665 black heart suit = valentine ♥

diams 9830 2666 black diamond suit ♦

HTML Primer & Reference Guide 32

Reference Guide:- HTML
Special Entities

Entity
Name Glyph

Alpha Dec Hex

quot 34 0022 quotation mark "

amp 38 0026 ampersand &

lt 60 003c left angle-bracket (‘less than’ symbol) <

gt 62 003e right angle-bracket (‘greater than’ symbol) >

OElig 338 0152 latin capital ligature OE Œ

oelig 339 0153 latin small ligature oe œ

Scaron 352 0160 latin capital letter S with caron Š

scaron 353 0161 latin small letter s with caron š

Yuml 376 0178 latin capital letter Y with diaeresis Ÿ

circ 710 02c6 modifier letter circumflex accent ˆ

tilde 732 02dc small tilde ˜

ensp 8194 2002 en space

emsp 8195 2003 em space

thinsp 8201 2009 thin space

zwnj 8204 200c zero width non-joiner

zxj 8205 200d zero width joiner

lrm 8206 200e left-to-right mark

rlm 8207 200f right-to-left mark

8236 202c end directionality override

8237 202d force ltr directionality

8238 202e force rtl directionality

ndash 8211 2013 en dash –

mdash 8212 2014 em dash —

lsquo 8216 2018 left single quotation mark ‘

rsquo 8217 2019 right single quotation mark ’

sbquo 8218 201a single low-9 quotation mark ‚

ldquo 8220 201c left double quotation mark “

rdquo; 8221 201d right double quotation mark ”

bdquo 8222 201e double low-9 quotation mark „

dagger 8224 2020 dagger †

Dagger 8225 2021 double dagger ‡

permil 8240 2030 per mille sign ‰

8241 2031 ‱

lsaquo 8249 2039 single left-pointing angle quotation mark ‹

rsaquo 8250 203a single right-pointing angle quotation mark ›

euro 8364 20ac euro sign €

HTML Primer & Reference Guide 33

Reference Guide:- HTML

a – Anchor

Syntax: <a>...

Description: An anchor is a fundamental part of html documents, as it provides the
hypertext links between those documents.

See also: a, bdo, br, img, map, object, q, script, span, sub, sup

Properties:
Content model: Inline

Contained in: Block-level + Inline elements (not a)

Can contain: Inline elements (not a)

Standard: HTML 4.01 Strict, HTML 3.2 Final, HTML 2.0

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

accesskey accessibility key character

charset char encoding of linked resource (RFC2045)

coords for use with client-side image maps

href URI for linked resource (RFC2396).

hreflang 2-char language codes

name named link end (see also id within core-attributes).

onblur (script) the element lost the focus

onfocus (script) the element got the focus

rel forward link types

rev reverse link types

shape for use with client-side image maps

tabindex position in tabbing order

type advisory content type (RFC2045)

HTML Primer & Reference Guide 34

http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt

Reference Guide:- HTML
id:

href:

name:

(within-page links):

Sometimes you want to be able to link to sections of your document, but upon
the same page. That is done by using a with the name attribute, which names
a fragment of your document. The link to it then employs a URI ‘fragment’
construct. Here is what naming a fragment of a document can look like (see
this note on namespaces for why both ‘id’ & ‘name’ are used):

Section A

The technical name is a URI ‘fragment’. An anchor on the same document to
that fragment would then look like this:

Section A

...or from another document:
Section A

HTML Primer & Reference Guide 35

Reference Guide:- HTML

abbr - Abbreviation

Syntax: <abbr>...</abbr>

Description: ‘abbr’ & ‘acronym’ are easily confused; each is an abbreviation of a
longer word, but acronym is used when the short form is a pronounceable
word. For each, title (see core-attributes) can be used to allow the long-
form to be shown as a ‘tooltip’ in visual browsers.

See also: abbr, acronym, b, big, cite, code, dfn, em, i, kbd, samp, small,
strong, tt, var

Properties:
Content model: Inline

Contained in: Block-level + Inline elements

Can contain: Inline elements

Standard: HTML 4.01 Strict

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

HTML Primer & Reference Guide 36

Reference Guide:- HTML

acronym – Acronym

Syntax: <acronym>...</acronym>

Description: ‘abbr’ & ‘acronym’ are easily confused; each is an abbreviation of a
longer word, but acronym is used when the short form is a pronounceable
word. For each, title (see core-attributes) can be used to allow the long-
form to be shown as a ‘tooltip’ in visual browsers.

See also: abbr, acronym, b, big, cite, code, dfn, em, i, kbd, samp, small,
strong, tt, var

Properties:
Content model: Inline

Contained in: Block-level + Inline elements

Can contain: Inline elements

Standard: HTML 4.01 Strict

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

HTML Primer & Reference Guide 37

Reference Guide:- HTML

address - Address

Syntax: <address>...</address>

Description: address is designed to provide contact information for the author of the
document.

See also: address, blockquote, div, dl, fieldset, form, hr, noscript, p,
table

Properties:
Content model: Block

Contained in: applet, blockquote, body, button, center, dd, del,
div, fieldset, form, iframe, ins, li, map, noframes,
noscript, object, td, th

Can contain: Inline elements

Standard: HTML 4.01 Strict, HTML 3.2 Final, HTML 2.0

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

HTML Primer & Reference Guide 38

Reference Guide:- HTML

applet - Java applet

Syntax: <applet width=”100” height=”100”>...</applet>

Description: applet is used to embed Java applets. It is deprecated in HTML4 in favour of
object

See also: a, bdo, br, img, map, object, q, script, span, sub, sup

Properties:
Content model: Inline

Contained in: Block-level except pre + Inline elements

Can contain: param elements followed by block-level elements and/or
inline elements

Standard: HTML 4.01 Loose, HTML 3.2 Final

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

align vertical or horizontal alignment

alt short description

archive comma-separated archive list

code applet class file

codebase optional base URI for applet

height initial height RequiredRequired

hspace horizontal gutter

name allows applets to find each other

object serialized applet file

vspace vertical gutter

width initial width RequiredRequired

See also: param

HTML Primer & Reference Guide 39

Reference Guide:- HTML

area - Image map region

Syntax: <area alt=”functional description”>

Description: area defines a client-side image map. HTML4 has extended the map element
so that it can contain one or more block-level elements—such as object—in
addition to the area element.

See also: a, bdo, br, img, map, object, q, script, span, sub, sup

Properties:
Content model: Other

Contained in: map

Can contain: (empty)

Standard: HTML 4.01 Strict, HTML 3.2 Final

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

accesskey accessibility key character

alt short description RequiredRequired

coords comma-separated list of lengths

href URI for linked resource

nohref inactive region

onblur (script) the element lost the focus

onfocus (script) the element got the focus

shape (rect | circle | poly | default) (default rect)
controls interpretation of coords

tabindex position in tabbing order

Here is a typical pre- HTML4 usage:

HTML Primer & Reference Guide

<map name="mymap">
<area href="/reference/" alt="html and css reference" coords="5,5,95,195">
<area href="/design/" alt="design guide" coords="105,5,195,195">
<area href="/tools/" alt="tools" coords="205,5,295,195">
</map>
<img src="sitemap.gif" alt="site map" usemap="#mymap" width=300
height=200>

40

Reference Guide:- HTML

b - Bold text

Syntax: ...

Description: bold and strong text by default are normally rendered the same in
visual browsers.

See also: abbr, acronym, b, big, cite, code, dfn, em, i, kbd, samp, small,
strong, tt, var

Properties:
Content model: Inline

Contained in: Block-level + Inline elements

Can contain: Inline elements

Standard: HTML 4.01 Strict, HTML 3.2 Final, HTML 2.0

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

HTML Primer & Reference Guide 41

Reference Guide:- HTML

base - Document base url

Syntax: <base>

Description: base (one only) defines the absolute URL used to resolve document relative
urls. It can be especially useful for docs sent in an email, etc.

See also: base, isindex, head, link, meta, object, script, style, title

Properties:
Content model: Other

Contained in: head

Can contain: (empty)

Standard: HTML 4.01 Strict, HTML 3.2 Final, HTML 2.0

Attributes:
i18n: - see language-attributes

href URI that acts as base URI RequiredRequired

target (4.01 Frameset) render links in that frame by default

href:

(Required in HTML4 Strict but optional in Loose) href specifies an absolute
URI that acts as the base URI for resolving relative URIs. Most of the time
this element should not be needed, as the browser will be able to accurately
determine what the base url is, or perhaps all href attributes throughout the
document are already absolute URLs.

absolute v’s relative URI:

A URI can consist of many parts. The relative URI starts at the part following
the last slash (‘/’) in the path:

URI: scheme://user:pass@host:port/path?query#fragment
eg: http://www.w3.org/TR/REC-html40/struct/links.html#h-12.4.1

• scheme: “http”
• user: (optional) username
• pass: (optional) password
• host: “www.w3.org”
• port: (optional) port number (eg 80 for most web documents)
• path: (can be empty) “TR/REC-html40/struct/links.html”
• query: (optional) (not used here)
• fragment: (optional) “h-12.4.1”

HTML Primer & Reference Guide 42

Reference Guide:- HTML
Using the previous example, that document could have the following (note
that a fragment would NOT appear within a base.href, and that a “..” says
“start at the next higher directory”, which here is “REC-html40”):

base.href:
http://www.w3.org/TR/REC-html40/struct/links.html

start dir for relative links:
http://www.w3.org/TR/REC-html40/struct/

example relative link:
Index

...which latter would resolve to the URI:
http://www.w3.org/TR/REC-html40/index/list.html

applet & object:

The object and applet elements define attributes that take precedence
over the value set by the BASE element.

HTML Primer & Reference Guide 43

Reference Guide:- HTML

basefont - Base font change

Syntax: <basefont>...</basefont>

Description: basefont is used to change the base font of all content that follows the
instruction. It is deprecated in HTML4 in favour of style-sheets (and, just
like font, also considered completely naff).

See also: a, bdo, br, img, map, object, q, script, span, sub, sup

Properties:
Content model: Inline

Contained in: Block-level except pre + inline elements

Can contain: (empty)

Standard: HTML 4.01 Loose, HTML 3.2 Final

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

size [+|-]nn e.g. size="+1", size="4"

color (sRGB colours) text colour

face comma-separated list of font names

HTML Primer & Reference Guide 44

Reference Guide:- HTML

bdo - BiDi override

Syntax: <bdo dir=”ltr”>...</bdo>

Description: bdo takes a little bit of explanation (below):

See also: a, bdo, br, img, map, object, q, script, span, sub, sup

Properties:
Content model: Inline

Contained in: Block-level + Inline elements

Can contain: Inline elements

Standard: HTML 4.01 Strict

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

Unicode and/or UTF8 chars have an inherent property of directionality:
essentially, alphabets from languages to the east (and inclusive) of Israel are
written right-to-left, whilst those west of Israel are written left-to-right. bdo,
together with the dir attribute (see language-attributes), is used to signal a
change to the default direction of those characters (typically when a word
from a language with one dir is included within (say) a quotation with a
different dir value).

Note: Unicode contains identical signals within the charset:
‭ - force ltr directionality
‮ - force rtl directionality
‬ - end the override

HTML Primer & Reference Guide 45

Reference Guide:- HTML

big - Large text

Syntax: <big>...</big>

Description: big is normally rendered in a visual browser in a larger font size. It is also
possible to nest this element, which can lead to unpredictable results, as you
cannot be certain of the reader’s starting font size.

See also: abbr, acronym, b, big, cite, code, dfn, em, i, kbd, samp, small,
strong, tt, var

Properties:
Content model: Inline

Contained in: Block-level except pre + Inline elements

Can contain: Inline elements

Standard: HTML 4.01 Strict, HTML 3.2 Final

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

HTML Primer & Reference Guide 46

Reference Guide:- HTML

blockquote - Block quotation

Syntax: <blockquote>...</blockquote>

Description: blockquote is normally compared to q (short quotation):
q is inline & can contain only inline elements
blockquote can contain block-level elements

See also: address, blockquote, div, dl, fieldset, form, hr, noscript, p,
table

Properties:
Content model: Block

Contained in: applet, blockquote, body, button, center, dd, del,
div, fieldset, form, iframe, ins, li, map, noframes,
noscript, object, td, th

Can contain: 4.01 Strict: One or more block-level elements, or script.
4.01 Loose: inline elements or block-level elements

Standard: HTML 4.01 Strict, HTML 3.2 Final, HTML 2.0

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

Paradoxically, whilst blockquote can contain p elements it can NOT itself
be contained within a paragraph element under 4.01 Strict (to do so would
cause the render mode to switch to “Quirks mode”).

HTML Primer & Reference Guide 47

Reference Guide:- HTML

body - Document body

Syntax: <body>...</body>

Description: body contains the document body. Curiously, it is RequiredRequired within the html
container object-model, yet it’s start & end tags are optional (making it then a
kind of ghost in the machine).

See also: body, del, frameset, ins, html, noframes, script

Properties:
Content model: Other

Contained in: 4.01 Strict: html
4.01 Loose: html
4.01 Frameset: noframes

Can contain: 4.01 Strict: one or more block-level elements or del, ins,
script
4.01 Loose: inline elements, block-level elements, del, ins
4.01 Frameset: (same as Loose)

Standard: HTML 4.01 Strict, HTML 3.2 Final, HTML 2.0

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

alink (COLOR) colour of selected links (deprecated)

background (URI) texture tile for document background (deprecated)

bgcolor (COLOR) document background colour (deprecated)

link (COLOR) colour of links (deprecated)

onload (script) the document has been loaded

onunload (script) the document has been removed

text (COLOR) document text colour (deprecated)

vlink (COLOR) colour of visited links (deprecated)

frameset:

HTML4 Frameset documents do not use body at all, but rather use frameset
as their equivalent element. The one exception to this rule is noframes,
which has body as it’s first element (implicitly or explicitly) within the
content.

HTML Primer & Reference Guide 48

Reference Guide:- HTML

br - Line break

Syntax:

Description: br forces a break within the flow of text.

See also: a, bdo, br, img, map, object, q, script, span, sub, sup

Properties:
Content model: Inline

Contained in: Block-level + Inline elements

Can contain: (empty)

Standard: HTML 4.01 Strict, HTML 3.2 Final, HTML 2.0

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

clear (left|all|right|none) control of text flow (deprecated)

clear=(left|all|right|none):

The (deprecated) clear attribute is used to decide whether the flow of
content continues below adjacent, floating blocks (normally images or
tables).
eg
<br clear=”left”>: move next content flow below any content at left

(but together with content at right)

HTML Primer & Reference Guide 49

Reference Guide:- HTML

button - Button

Syntax: <button type=”submit” name=”something”>...</button>

Description: button is new in HTML4, and defines a submit (the default), reset or (push)
button. Pre- HTML4 browsers used the input control; button is designed to
allow a greater range of internal labels, including images & emphasis.

See also: button, fieldset, form, input, label, legend, optgroup, option,
select, textarea

Properties:
Content model: Inline

Contained in: Block-level elements, inline elements except button

Can contain: Inline elements except a, button, input, iframe, label,
select or textarea
Block-level elements except fieldset, form or isindex

Standard: HTML 4.01 Strict

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

accesskey accessibility key character

disabled

name submit as part of form RequiredRequired

onblur (script) the element lost the focus

onfocus (script) the element got the focus

tabindex position in tabbing order

type (button|reset|submit) (default: submit)
for use as form button RequiredRequired

value sent to server when submitted

HTML Primer & Reference Guide 50

Reference Guide:- HTML
type=”...”:

name:

value:

name and value attributes act in the same way as other controls: their value pairs
are sent to server when a submit button is pushed (if no type attribute is specified
then the button is a submit button; good programming practice dictates that you
always specify name & value atributes for submit & push buttons, even if they are
the same as the default values).

Below is a typical usage defining 2 buttons, with the results below. Note that neither
image file is available, so thebrowser shows the alt values. Note also that that is a
very poor example for me to set (!), as the web-server error logs would fill up with
404 notices for the missing files:

accesskey:

The examples above use ‘M’ & ‘R’ as the access-keys, with the point here that each
are Capital letters. Any single Unicode/UTF8 letter, or entity, can be used, and this
flexibility can easily lead into usability issues. How are your users, as one example,
going to manage if you specify “Æ” as the access-character (the entity for
“Æ”), let alone Unicode/UTF8, where it is perfectly possible to specify a character
from the Greek, Cyrillic, Israeli, Arabic, Chinese, Japanese or many other alphabets?

Even the examples above have a usability issue... The classic way to access a control
(I was using winXP) is to use the ‘Alt’ key + the letter (both keys at the same time).
So, whilst testing the buttons above I did “Alt+m” & “Alt+r”, but neither worked!
That was because it needed to be “Alt+M” or “Alt+R” (3 keys at the same time, and
not 2). On such small issues will your users curse you, or thank you.

HTML Primer & Reference Guide

<p>
<button name="submit" value="modify" accesskey="M">
 Modify information

</button>
<button name="reset" accesskey="R">
 Reset

</button>
</p>

51

Reference Guide:- HTML

caption - Table caption

Syntax: <caption>...</caption>

Description: caption optionally defines a caption for the table, and is a useful useability
feature for users of all types of browser. caption allows a block of (inline)
text, whilst the summary attribute of table allows a mid-length line of text
(but mostly for users using browser text-readers) and the title attribute of
table allows a brief tooltip-type text.

See also: caption, col, colgroup, tbody, table, td, tfoot, th, thead, tr

Properties:
Content model: Block

Contained in: table

Can contain: Inline elements

Standard: HTML 4.01 Strict, HTML 3.2 Final

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

align (top|bottom|left|right)
caption position relative to table (deprecated)

If used, caption must be the first element in the table. See table: the whole
thing for most of the elements of table assembled together.

HTML Primer & Reference Guide 52

Reference Guide:- HTML

center - Centred block

Syntax: <center>...</center>

Description: The W3C describes center as “shorthand for DIV align=center” (that
attribute is also deprecated throughout HTML4 Strict).

A note for UK children: we Brits make a point, most generously, of never,
ever pointing out to the Yanks that they cannot spell “centre” correctly.

Properties:
Content model: Block

Contained in: applet, blockquote, body, button, center, dd, del,
div, fieldset, form, iframe, ins, li, map, noframes,
noscript, object, td, th

Can contain: Inline elements, block-level elements

Standard: HTML 4.01 Loose, HTML 3.2 Final

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

center has retained a strong connection with table due to poor support
from HTML4 & earlier browsers for the align attribute + early lack of support
for the CSS method of centring tables (setting horizontal margins to ‘auto’).

HTML Primer & Reference Guide 53

Reference Guide:- HTML

cite - Citation

Syntax: <cite>...</cite>

Description: cite is normally rendered in a visual browser in italics.

See also: abbr, acronym, b, big, cite, code, dfn, em, i, kbd, samp, small,
strong, tt, var

Properties:
Content model: Inline

Contained in: Block-level + Inline elements

Can contain: Inline elements

Standard: HTML 4.01 Strict, HTML 3.2 Final, HTML 2.0

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

HTML Primer & Reference Guide 54

Reference Guide:- HTML

code - Computer code

Syntax: <code>...</code>

Description: code is normally rendered in a visual browser in monospaced text.
Note: code contained within any container other than pre will have any
multiple contiguous spaces collapsed to a single space; that is probably not
what you want.

See also: abbr, acronym, b, big, cite, code, dfn, em, i, kbd, samp, small,
strong, tt, var

Properties:
Content model: Inline

Contained in: Block-level + Inline elements

Can contain: Inline elements

Standard: HTML 4.01 Strict, HTML 3.2 Final, HTML 2.0

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

HTML Primer & Reference Guide 55

Reference Guide:- HTML

col - Table column

Syntax: <col>

Description: col optionally defines common attributes.within a column of table data-
cells (td or th). colgroup is used to group columns structurally, whilst col
saves typing out the identical attributes for each of the data-cells.

Note: support is poor for col in early HTML4 browsers.

See also: caption, col, colgroup, tbody, table, td, tfoot, th, thead, tr

Properties:
Content model: Other

Contained in: colgroup, table

Can contain: (empty)

Standard: HTML 4.01 Strict

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

align (left|center|right|justify|char)
horizontal alignment of cells (deprecated)

char (default: ‘.’) char value if align=char

charoff (pixels or %) offset in cell to char if align=char

span (default: 1) COL attributes affect N columns

valign (top|middle|bottom|baseline) vertical alignment of cells

width (pixels or % or relative) column width

If used, col must be after the optional caption and before the optional
thead. See table: the whole thing for most of the elements of table
assembled together.

HTML Primer & Reference Guide 56

Reference Guide:- HTML

colgroup - Table column group

Syntax: <colgroup>...<colgroup>

Description: The optional colgroup is intended to “create structural divisions within a
table”.by grouping columns of table data-cells (td or th) together. Fine
intentions then subverted by the HTML designers providing the col element,
which (seems to have) the identical attributes & action of the colgroup
element (doh!). Early browser designers for HTML4 ignored both elements.

See also: caption, col, colgroup, tbody, table, td, tfoot, th, thead, tr

Properties:
Content model: Other

Contained in: table

Can contain: Zero or more col elements

Standard: HTML 4.01 Strict

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

align (left|center|right|justify|char)
horizontal alignment of cells (deprecated)

char (default: ‘.’) char value if align=char

charoff (pixels or %) offset in cell to char if align=char

span (default: 1) (ignored if colgroup contains col elements)
default number of columns in group

valign (top|middle|bottom|baseline) vertical alignment of cells

width (pixels or % or relative) column width

colgroup is very useful when a table contains a very large number of
columns with identical layout. col elements can then be used if one or two
columns differ from the rest (col attributes will override colgroup
attributes, and any span on colgroup will be ignored).

If used, colgroup must be after the optional caption and before the
optional thead. See table: the whole thing for most of the elements of table
assembled together.

HTML Primer & Reference Guide 57

Reference Guide:- HTML

dd - Definition description

Syntax: <dd>...</dd>

Description: dd is part of a useful list structure.

See also: dd, dl, dt

Properties:
Content model: Block

Contained in: dl elements

Can contain: Inline elements, block-level elements

Standard: HTML 4.01 Strict, HTML 3.2 Final, HTML 2.0

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

See the whole thing for an example of all definition elements put together.

HTML Primer & Reference Guide 58

Reference Guide:- HTML

del - Deleted text

Syntax: ...

Description: del is normally rendered in a visual browser in strikethrough text., and is
intended to indicate text deleted from this version of the document It is
unusual in being capable of being either a block-level or an inline element. If
used in an inline context—for example, within a paragraph—it cannot then
contain any block-level elements.

See also: ins, del, strike

Properties:
Content model: Inline or Block

Contained in: Block-level elements, inline elements

Can contain: Block-level elements, inline elements

Standard: HTML 4.01 Strict

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

cite (URI) info on reason for change

datetime date and time of change
(ISO format: “YYYY-MM-DDThh:mm:ssTZD”)

cite:

datetime:

title:

cite + datetime are optionally available to give a url for readers to obtain
further information on the reason for the change (cite) and the time & date
of that change (datetime). W3C states that “they are primarily intended
for private use (e.g. by server-side scripts collecting statistics about a site's
edits), not for readers”. A simpler method to give succinct info is via the
title attribute (see core-attributes).

HTML Primer & Reference Guide 59

Reference Guide:- HTML

dfn - Defined term

Syntax: <dfn>...</dfn>

Description: dfn is normally rendered in a visual browser in italic text.

See also: abbr, acronym, b, big, cite, code, dfn, em, i, kbd, samp, small,
strong, tt, var

Properties:
Content model: Inline

Contained in: Block-level + Inline elements

Can contain: Inline elements

Standard: HTML 4.01 Strict, HTML 3.2 Final

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

HTML Primer & Reference Guide 60

Reference Guide:- HTML

dir - Directory list

Syntax: <dir>...</dir>

Description: dir is a.list of items for a directory list (deprecated in HTML 4 Strict in
favour of ol or ul). Note that the contained li elements are NOT allowed to
contain block-level elements, which prevents a nested listing of (for example)
sub-directories.

See also: dir, li, menu, ol, ul

Properties:
Content model: Block

Contained in: applet, blockquote, body, button, center, dd, del,
div, fieldset, form, iframe, ins, li, map, noframes,
noscript, object, td, th

Can contain: One or more li elements (which cannot contain block-level
elements)

Standard: HTML 4.01 Loose, HTML 3.2 Final, HTML 2.0

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

compact display in a compact style (deprecated)

compact:

compact is poorly supported by browsers.

HTML Primer & Reference Guide 61

Reference Guide:- HTML

div - Generic block-level container

Syntax: <div>...</div>

Description: div is normally compared to span (inline container):
The intention of both containers is essentially to allow style to be applied to a
set of block-level (div) or inline (span) elements.

See also: address, blockquote, div, dl, fieldset, form, hr, noscript, p,
table

Properties:
Content model: Block

Contained in: applet, blockquote, body, button, center, dd, del,
div, fieldset, form, iframe, ins, li, map, noframes,
noscript, object, td, th

Can contain: Inline elements, block-level elements

Standard: HTML 4.01 Strict, HTML 3.2 Final

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

align (left | center | right | justify) horizontal alignment
(deprecated)

HTML Primer & Reference Guide 62

Reference Guide:- HTML

dl - Definition list

Syntax: <dl>...</dl>

Description: dl is the container for a useful list structure.

See also: address, blockquote, div, dl, fieldset, form, hr, noscript, p,
table

Properties:
Content model: Block

Contained in: applet, blockquote, body, button, center, dd, del,
div, fieldset, form, iframe, ins, li, map, noframes,
noscript, object, td, th

Can contain: One or more dt or dd elements

Standard: HTML 4.01 Strict, HTML 3.2 Final, HTML 2.0

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

See also: dd, dl, dt

the whole thing:

This is what the whole set can look like:

...and, on the next page, what it looks like in Firefox23 with the default
stylesheet:

HTML Primer & Reference Guide

<dl>
 <dt>data term 1</dt>
 <dd>
 <p>
 The definition for the 1st data term
 </p>
 </dd>
 <dt>data term 2</dt>
 <dd>
 <p>
 The definition for the 2nd data term
 </p>
 </dd>
</dl>

63

Reference Guide:- HTML

HTML Primer & Reference Guide 64

Reference Guide:- HTML

doctype – Document Preamble

Syntax: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">

Description: doctype is a “required preamble” and is “required for legacy reasons”
(HTML5 Draft, Sep 2013) (HTML5 itself does NOT require either Public nor
System identifiers). Before HTML5 it never appears within the syntax, and is
mentioned only in passing or within the Document Type Declaration (DTD)
but, make no mistake, with HTML4 & later the browser will make sure that you
pay for it if you miss it from the document.

Properties:
Content model: Other

Contained in: (n/a)

Can contain: (n/a)

Standard: HTML5 Draft, HTML 4.01 Strict, HTML 3.2 Final, HTML 2.0

Attributes:
Public
identifier:

This is ‘ PUBLIC ’ followed by a FPI for the html version in
use. In HTML5, the ‘Public identifier + System Identifier’
together are called an “obsolete permitted DOCTYPE
string”, and only the four FPI’s + DTDs below are allowed,
to help authors transition from HTML4 and xHTML1.
FPIs:
• -//W3C//DTD HTML 4.0//EN
• -//W3C//DTD HTML 4.01//EN
• -//W3C//DTD XHTML 1.0 Strict//EN
• -//W3C//DTD XHTML 1.1//EN

System
identifier:

This is the URL for the DTD that refers to the html version in
use. As a URL it is case-sensitive, whereas all else is case-
insensitive.
DTDs:
• http://www.w3.org/TR/REC-html40/strict.dtd
• http://www.w3.org/TR/html4/strict.dtd
• http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
• http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd

Legacy
Doctypes:

• <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">

• <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"
 "http://www.w3.org/TR/html4/frameset.dtd">

• <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.1//EN"
• "http://www.w3.org/TR/xhtml-basic/xhtml-basic11.dtd">
• <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
• <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">
• <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
• <!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

HTML Primer & Reference Guide 65

http://www.w3.org/html/wg/drafts/html/CR/syntax.html#the-doctype
http://www.w3.org/html/wg/drafts/html/CR/syntax.html#the-doctype

Reference Guide:- HTML

Strict vs Transitional

HTML4 represented a big change in working practices compared to earlier versions, and
that was a challenge for developers used to working with html3, etc.. ‘Transitional’ was
therefore intended as a sort of halfway-house for those that found it difficult to completely
change overnight, whilst ‘Strict’ is how the language was intended to be.

What was the big change? Of the many changes, one of the biggest was support for Style
Sheets (CSS); this meant moving all presentational aspects from markup to CSS.
Ultimately, this makes all websites (but especially very large ones) very much easier to
maintain. It is, however, a completely different way to work compared to html3 & earlier
markup.

PS
Script & Style both existed in HTML3.2 Final but only as placeholders, ready for the next
version.

HTML Primer & Reference Guide 66

Reference Guide:- HTML

dt - Definition term

Syntax: <dt>...</dt>

Description: dt is part of a useful list structure.

See also: dd, dl, dt

Properties:
Content model: Block

Contained in: dl elements

Can contain: Inline elements

Standard: HTML 4.01 Strict, HTML 3.2 Final, HTML 2.0

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

See the whole thing for an example of all elements put together.

HTML Primer & Reference Guide 67

Reference Guide:- HTML

em - Emphasis

Syntax: ...

Description: em and i text are normally rendered the same as each other in visual
browsers.

See also: abbr, acronym, b, big, cite, code, dfn, em, i, kbd, samp, small,
strong, tt, var

Properties:
Content model: Inline

Contained in: Block-level + Inline elements

Can contain: Inline elements

Standard: HTML 4.01 Strict, HTML 3.2 Final, HTML 2.0

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

HTML Primer & Reference Guide 68

Reference Guide:- HTML

fieldset - Form control group

Syntax: <fieldset>...</fieldset>

Description: fieldset is designed to group together related controls within a form; it
must be followed by legend.

See also: address, blockquote, div, dl, fieldset, form, hr, noscript, p,
table

Properties:
Content model: Block

Contained in: applet, blockquote, body, center, dd, del, div,
fieldset, form, iframe, ins, li, map, noframes,
noscript, object, td, th

Can contain: A legend element, followed by zero or more block-level
elements and inline elements

Standard: HTML 4.01 Strict

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

See also: button, fieldset, form, input, label, legend, optgroup, option,
select, textarea

This is what the whole set can look like:

HTML Primer & Reference Guide

<form method="post" action="/cgi-bin/order.cgi">
 <fieldset>
 <legend accesskey="i">contact information</legend>
 <table>
 ...
 </table>
 </fieldset>
</form>

69

Reference Guide:- HTML

font - Font change

Syntax: ...

Description: font is used to cause a local change to font. It is deprecated in HTML4 in
favour of style-sheets (and, anyway, also considered completely naff).

See also: a, bdo, br, img, map, object, q, script, span, sub, sup

Properties:
Content model: Inline

Contained in: Block-level except pre + inline elements

Can contain: Inline elements

Standard: HTML 4.01 Loose, HTML 3.2 Final

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

size [+|-]nn e.g. size="+1", size="4"

color (sRGB colours) text colour

face comma-separated list of font names

HTML Primer & Reference Guide 70

Reference Guide:- HTML

form - Interactive form

Syntax: <form action=”(URI)”>...</form>

Description: form defines an interactive form. The form element can contain form
controls (button, input, option, select, textarea) which allow user
interaction. The user submits the form data via an input or a button
element with “type=”submit””.

See also: address, blockquote, div, dl, fieldset, form, hr, noscript, p,
table

Properties:
Content model: Block

Contained in: applet, blockquote, body, center, dd, del, div,
fieldset, iframe, ins, li, map, noframes, noscript,
object, td, th

Can contain: 4.01 Strict: one or more script or block-level elements
except form
4.01 Loose: inline elements or block-level elements except
form

Standard: HTML 4.01 Strict, HTML 3.2 Final, HTML 2.0

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

accept list of MIME types for file upload (RFC2045)

accept-
charset

list of supported charsets (RFC2045)

action (URI) server-side form handler RequiredRequired

enctype default: application/x-www-form-urlencoded (RFC2045)

method (get|post) (default: get)
HTTP method used to submit the form

name name of form for scripting

onreset (script) the form was reset

onsubmit (script) the form was submitted

target render in this frame (deprecated)

See also: button, fieldset, form, input, label, legend, optgroup, option,
select, textarea

HTML Primer & Reference Guide 71

http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt

Reference Guide:- HTML
method:

(default: “get”) In almost every circumstance this will need to be “post”. If
not, the form contents are placed in the URL, and that puts severe limits on
the amount of info that can be sent.

enctype:

(default: “application/x-www-form-urlencoded”) This aspect used to be a
black art; these days, scripting languages such as PHP make it most simple to
handle the forms server-side. This attribute is likely to be changed only if the
form receives file uploads.

This is what the whole set can look like:

HTML Primer & Reference Guide

<form method="post" action="/cgi-bin/order.cgi">
 <fieldset>
 <legend accesskey="i">contact information</legend>
 <table>
 ...
 </table>
 </fieldset>
<p>
 <input type=submit value="submit order">
 <input type=reset value="clear order form">
</p>
</form>

72

Reference Guide:- HTML

frame – Frame

Syntax: <frame>

Description: frame is a rectangular region of the display, which itself is defined by
frameset, and within which the frame must be contained. The content of
the frame comes from the attribute src. Note that none of the frame
attributes are required, though many have default values.

See also: body, frame, frameset, head, iframe, noframes

Properties:
Content model: Other

Contained in: frameset

Can contain: (empty)

Standard: HTML 4.01 Frameset

Attributes:
core: - see core-attributes

longdesc link to long description (intended to complement title)

name name of frame for targetting

src (URI) source of frame content

frameborder (default: 1 (yes)) request frame borders?

marginwidth margin widths in pixels

marginheight margin height in pixels

noresize (default: noresize) allow users to resize frames?

scrolling (yes|no|auto) (default: auto) scrollbar or none

name:

name must begin with a letter (followed by a mixture of letters and/or digits).

See how the W3C frames it for the full picture.

HTML Primer & Reference Guide 73

Reference Guide:- HTML

frameset - Frameset

Syntax: <frameset>...</frameset>

Description: frameset replaces the body.element; with this sole exception, the HTML4
Frameset DTD is identical to the HTML4 Transitional DTD (do notice the hint
that the W3C does not want you to use Frames). Elements normally placed
within a body element, if preceding the frameset element, will invalidate
the frameset.

See also: body, frame, frameset, head, iframe, noframes

Properties:
Content model: Block

Contained in: html

Can contain: One or more frameset & frame elements, as well as an
optional noframes

Standard: HTML 4.01 Frameset

Attributes:
core: - see core-attributes

rows (1 or more, comma separated: pixels or % or relative)
(default: 100% (1 row))
list of lengths

cols (1 or more, comma separated: pixels or % or relative)
(default: 100% (1 row))
list of lengths

onload (script) all the frames have been loaded

onunload (script) all the frames have been removed

Frames are rectangular regions of the display. frameset specifies the set of
frames that will constitute a full document display.

One of the problematic features of frameset & frames is that it allows the
URI of each frame to be from different domains. This means, for example,
that your carefully crafted pages may be shown within a screen with someone
else’s url in the address bar. Many people call this “theft”.

frameset.exists for a technical as well as a practical reason; at HTML4
introduction, so many html documents were missing a body tag that they
needed to specify a named-element to differentiate 4.0 Frameset docs from
4.0 Loose docs. For the same reason, frameset (but not body) tags are
RequiredRequired within a HTML4 frameset document.

HTML Primer & Reference Guide 74

Reference Guide:- HTML
how the W3C frames it:

Here is html from the W3C:

...and how it looks in Firefox23 with default style:
Note 1: the 3 pieces of content do not exist, but you can see the
separators between each frame.
Note 2: although it is not visible in the picture, the separators can be
moved via the mouse (see frame.noresize) (no support).

HTML Primer & Reference Guide

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"
 "http://www.w3.org/TR/html4/frameset.dtd">
<HTML>
<HEAD>
<TITLE>A simple frameset document</TITLE>
</HEAD>
<FRAMESET cols="20%, 80%">
 <FRAMESET rows="100, 200">
 <FRAME src="contents_of_frame1.html">
 <FRAME src="contents_of_frame2.gif">
 </FRAMESET>
 <FRAME src="contents_of_frame3.html">
 <NOFRAMES>
 <P>This frameset document contains:

 Some neat contents

 Some other neat
contents

 </NOFRAMES>
</FRAMESET>
</HTML>

75

http://www.w3.org/TR/html4/frameset.dtd

Reference Guide:- HTML

h1 - Level-one heading

Syntax: <h1>...</h1>

Description: h1 (etc.) are headings for a document, where ‘h1’ is the most-important
heading, and ‘h6’ is the least-important. As part of learning to create readable
documents, you should ensure that each html doc that you write has one (and
only one) h1 heading. Other headings are then optional, but can also help
make what you write more readable if carefully chosen.

See also: h1, h2, h3, h4, h5, h6

Properties:
Content model: Block

Contained in: applet, blockquote, body, button, center, dd, del,
div, fieldset, form, iframe, ins, li, map, noframes,
noscript, object, td, th

Can contain: Inline elements

Standard: HTML 4.01 Strict, HTML 3.2 Final, HTML 2.0

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

align (left|center|right|justify) horizontal alignment (deprecated)
style:

Visual browsers use a very simple algorithm in how they display headings;
you will almost certainly want to change it. Below is some simple html + then
how it looks (default, no added style) in FireFox23.0.1:

HTML Primer & Reference Guide

<h1>The Top Level-1 Heading</h1>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Cras id
ullamcorper velit.</p>
<h2>The Level-2 Heading</h2>
 <p>Interdum et malesuada fames ac ante ipsum primis in faucibus.</p>
<h3>The Level-3 Heading</h3>
 <p>Etiam iaculis, lacus ac commodo aliquam, eros ipsum feugiat nibh,
egestas tincidunt elit eros ac lorem.</p>
<h4>The Level-4 Heading</h4>
 <p>Pellentesque felis purus, mollis eget turpis vulputate, venenatis
posuere metus.</p>
<h5>The Level-5 Heading</h5>
 <p>Morbi ut ultrices felis. Morbi tincidunt tincidunt mauris, ac
elementum purus tempor vel.</p>
<h6>The Level-6 Heading</h6>
 <p>Ut elementum sodales sodales.Aenean pharetra, lacus et sollicitudin
posuere.

 With thanks to the Lorem Ipsum
generator.</p>

76

Reference Guide:- HTML

You may also be interested to know that Google (and other SEs) use their
investigation of a document’s headings as part of their decision on the Page-
Rank of that document.

HTML Primer & Reference Guide 77

Reference Guide:- HTML

h2 - Level-two heading

Syntax: <h2>...</h2>

Description: h2 (etc.) are headings for a document, where ‘h1’ is the most-important
heading, and ‘h6’ is the least-important. As part of learning to create readable
documents, you should ensure that each html doc that you write has one (and
only one) h1 heading. Other headings are then optional, but can also help
make what you write more readable if carefully chosen.

See also: h1, h2, h3, h4, h5, h6

Properties:
Content model: Block

Contained in: applet, blockquote, body, button, center, dd, del,
div, fieldset, form, iframe, ins, li, map, noframes,
noscript, object, td, th

Can contain: Inline elements

Standard: HTML 4.01 Strict, HTML 3.2 Final, HTML 2.0

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

align (left|center|right|justify) horizontal alignment (deprecated)
style:

Look at the bottom of h1 to see how the 6 headers look in a browser without
any added style.

HTML Primer & Reference Guide 78

Reference Guide:- HTML

h3 - Level-three heading

Syntax: <h3>...</h3>

Description: h3 (etc.) are headings for a document, where ‘h1’ is the most-important
heading, and ‘h6’ is the least-important. As part of learning to create readable
documents, you should ensure that each html doc that you write has one (and
only one) h1 heading. Other headings are then optional, but can also help
make what you write more readable if carefully chosen.

See also: h1, h2, h3, h4, h5, h6

Properties:
Content model: Block

Contained in: applet, blockquote, body, button, center, dd, del,
div, fieldset, form, iframe, ins, li, map, noframes,
noscript, object, td, th

Can contain: Inline elements

Standard: HTML 4.01 Strict, HTML 3.2 Final, HTML 2.0

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

align (left|center|right|justify) horizontal alignment (deprecated)
style:

Look at the bottom of h1 to see how the 6 headers look in a browser without
any added style.

HTML Primer & Reference Guide 79

Reference Guide:- HTML

h4 - Level-four heading

Syntax: <h4>...</h4>

Description: h4 (etc.) are headings for a document, where ‘h1’ is the most-important
heading, and ‘h6’ is the least-important. As part of learning to create readable
documents, you should ensure that each html doc that you write has one (and
only one) h1 heading. Other headings are then optional, but can also help
make what you write more readable if carefully chosen.

See also: h1, h2, h3, h4, h5, h6

Properties:
Content model: Block

Contained in: applet, blockquote, body, button, center, dd, del,
div, fieldset, form, iframe, ins, li, map, noframes,
noscript, object, td, th

Can contain: Inline elements

Standard: HTML 4.01 Strict, HTML 3.2 Final, HTML 2.0

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

align (left|center|right|justify) horizontal alignment (deprecated)
style:

Look at the bottom of h1 to see how the 6 headers look in a browser without
any added style.

HTML Primer & Reference Guide 80

Reference Guide:- HTML

h5 - Level-five heading

Syntax: <h5>...</h5>

Description: h5 (etc.) are headings for a document, where ‘h1’ is the most-important
heading, and ‘h6’ is the least-important. As part of learning to create readable
documents, you should ensure that each html doc that you write has one (and
only one) h1 heading. Other headings are then optional, but can also help
make what you write more readable if carefully chosen.

See also: h1, h2, h3, h4, h5, h6

Properties:
Content model: Block

Contained in: applet, blockquote, body, button, center, dd, del,
div, fieldset, form, iframe, ins, li, map, noframes,
noscript, object, td, th

Can contain: Inline elements

Standard: HTML 4.01 Strict, HTML 3.2 Final, HTML 2.0

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

align (left|center|right|justify) horizontal alignment (deprecated)
style:

Look at the bottom of h1 to see how the 6 headers look in a browser without
any added style.

HTML Primer & Reference Guide 81

Reference Guide:- HTML

h6 - Level-six heading

Syntax: <h6>...</h6>

Description: h6 (etc.) are headings for a document, where ‘h1’ is the most-important
heading, and ‘h6’ is the least-important. As part of learning to create readable
documents, you should ensure that each html doc that you write has one (and
only one) h1 heading. Other headings are then optional, but can also help
make what you write more readable if carefully chosen.

See also: h1, h2, h3, h4, h5, h6

Properties:
Content model: Block

Contained in: applet, blockquote, body, button, center, dd, del,
div, fieldset, form, iframe, ins, li, map, noframes,
noscript, object, td, th

Can contain: Inline elements

Standard: HTML 4.01 Strict, HTML 3.2 Final, HTML 2.0

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

align (left|center|right|justify) horizontal alignment (deprecated)
style:

Look at the bottom of h1 to see how the 6 headers look in a browser without
any added style.

HTML Primer & Reference Guide 82

Reference Guide:- HTML

head - Document head

Syntax: <head>...</head>

Description: head is designed to provide header information for the HTML document. In
general, the title (requiredrequired) is the only element that is seen. Curiously, and
exactly like html and body, head is RequiredRequired within the html object-model
yet it’s start & end tags are optional.

See also: body, DTD, frameset, head, html

Properties:
Content model: Other

Contained in: html

Can contain: RequiredRequired title element (just one); optional base and
isindex elements; zero or more link, meta, object,
script or style elements

Standard: HTML 4.01 Strict, HTML 3.2 Final, HTML 2.0

Attributes:
i18n: - see language-attributes

profile (URI) named dictionary of meta info

See also: base, isindex, head, link, meta, object, script, style, title

profile:

profile was never seriously adopted, and has been droppeddropped in HTML5.

optional tags:
See the section under html.

HTML Primer & Reference Guide 83

Reference Guide:- HTML

hr - Horizontal rule

Syntax: <hr>

Description: hr is possibly one of the simplest html elements: it draws a horizontal rule
across the page. If you want to use it for purely decorative purposes, then
using style (eg border-top) on a suitable block element will be far better.

See also: address, blockquote, div, dl, fieldset, form, hr, noscript, p,
table

Properties:
Content model: Block

Contained in: applet, blockquote, body, button, center, dd, del,
div, fieldset, form, iframe, ins, li, map, noframes,
noscript, object, td, th

Can contain: (empty)

Standard: HTML 4.01 Strict, HTML 3.2 Final, HTML 2.0

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

align (left|center|right) horizontal alignment (deprecated)

noshade (a solid line) (deprecated)

size (pixels) height (deprecated)

width (pixels or %) (deprecated)

HTML Primer & Reference Guide 84

Reference Guide:- HTML

html - HTML document

Syntax: <html>...</html>

Description: html contains the HTML document. Curiously, and exactly like body, it is
RequiredRequired within the html object-model (it is the top-level container), yet it’s
start & end tags are optional.

See also: body, DTD, frameset, head

Properties:
Content model: Other

Contained in: (html is the top-level container)

Can contain: 4.01 Strict: head then body
4.01 Loose: (same as Strict)
4.01 Frameset: head then frameset

Standard: HTML 4.01 Strict, HTML 3.2 Final, HTML 2.0

Attributes:
i18n: - see language-attributes

version (DTD) (deprecated in favour of DOCTYPE)

version:

This is a kind of DTD lite (and thoroughly deprecated in HTML4). An example
is:

"-//W3C//DTD HTML 4.01 Transitional//EN"
(optional tags):

Both opening and end-tags for html are optional in HTML4 (but not xml), and
you will find that to be very rare in this PDF.

Immediately before introduction of HTML4, the designers were faced with the
issue of an existing base of tens of millions of html pages (that number is now
billions) that—by definition—were not HTML4. A very great number of those
documents had neither html nor head nor body tags.

It seems clear that the HTML4 designers opted for optional tags to give the best
chance for those earlier documents to validate in HTML4 browsers. In this, as
with so much else, they were thwarted by the browser designers...

Always use opening/closing tags for html/head/body in your own html
docs. If you do not then the browser will declare your work to be ‘Quirky’,
rather than ‘Compliant’, and may not give a reliable display for every
component, possibly leading to a case of screaming hab-nabs in the author.

HTML Primer & Reference Guide 85

Reference Guide:- HTML

i - Italic text

Syntax: <i>...</i>

Description: em and i text are normally rendered the same as each other in visual
browsers.

See also: abbr, acronym, b, big, cite, code, dfn, em, i, kbd, samp, small,
strong, tt, var

Properties:
Content model: Inline

Contained in: Block-level + Inline elements

Can contain: Inline elements

Standard: HTML 4.01 Strict, HTML 3.2 Final, HTML 2.0

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

HTML Primer & Reference Guide 86

Reference Guide:- HTML

iframe - Inline frame

Syntax: <iframe>...</iframe>

Description: iframe is used to create an inline subwindow. It is beloved of advertisers, as
the space occupied is owned entirely by the domain that provides the src,
regardless of the URL in the address bar. It is deprecated in HTML4 in favour
of object.

See also: a, bdo, br, img, map, object, q, script, span, sub, sup

Properties:
Content model: Inline

Contained in: Block-level + inline elements

Can contain: Block-level + inline elements

Standard: HTML 4.01 Loose

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

align vertical or horizontal alignment

frameborder (0|1) (default 1) request frame borders?

height frame height

longdesc (URI) link to long description

marginheight margin height in pixels

marginwidth margin widths in pixels

name name of frame for targetting

scrolling (yes|no|auto) (default auto) scrollbar or none

src source of frame content

width frame width

HTML Primer & Reference Guide 87

Reference Guide:- HTML

img - Inline image

Syntax:

Description: img is an embedded image.

See also: a, bdo, br, img, map, object, q, script, span, sub, sup

Properties:
Content model: Inline

Contained in: Block-level except pre + inline elements

Can contain: (empty)

Standard: HTML 4.01 Strict, HTML 3.2 Final, HTML 2.0

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

align vertical or horizontal alignment (deprecated)

alt short description RequiredRequired

border link border width (deprecated)

height (pixels or %) override height

hspace horizontal gutter (deprecated)

ismap use server-side image map

longdesc URI link to long description

name name of image for scripting

src URI of image to embed RequiredRequired

usemap use client-side image map

vspace vertical gutter (deprecated)

width (pixels or %) override width

alt:

The alt description will be shown whilst the image loads (or instead if it fails
to load); consider also that many folks use browsers that are text only.

HTML Primer & Reference Guide 88

Reference Guide:- HTML
height:

width:

Using the height and width attributes can assist with perceived page load
speeds: the browser will reserve that space for the image immediately if used,
whilst it has to wait for the images to arrive to calculate the space required if
not.

HTML Primer & Reference Guide 89

Reference Guide:- HTML

input - Form input

Syntax: <input type=”text” name=”something”>

Description: input provides controls to facilitate user input, and is most often used
within a form, although beware that some pre- HTML4 browsers will not show
the control outside of a form.

See also: button, fieldset, form, input, label, legend, optgroup, option,
select, textarea

Properties:
Content model: Inline

Contained in: Block-level elements, inline elements except button

Can contain: (empty)

Standard: HTML 4.01 Strict, HTML 3.2 Final, HTML 2.0

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

accept list of MIME types for file upload (RFC2045)

accesskey accessibility key character

align (top|middle|bottom|left|right)
vertical or horizontal image alignment (deprecated)

alt short description

checked for radio buttons and check boxes

disabled

ismap use server-side image map

maxlength max chars for text fields

name submit as part of form RequiredRequired

onblur (script) the element lost the focus

onchange (script) the element value was changed

onfocus (script) the element got the focus

onselect (script) some text was selected

readonly for text and passwd

size specific to each type of field

src for fields with images

HTML Primer & Reference Guide 90

http://www.ietf.org/rfc/rfc2045.txt

Reference Guide:- HTML
tabindex position in tabbing order

type (button|checkbox|file|hidden|image|password|
radio|reset|submit|text)
what kind of widget is needed

RequiredRequired

usemap (URL) use client-side image map

value Specify for radio buttons and checkboxes

id=”...”:

name=”...”:

The RequiredRequired name attribute of every input element is sent to the server on
form submission as part of a set of name/value pairings; the ‘name’ part of
the pair comes from the input’s name attribute, whilst the value depends on
both the type of input and the user’s input to that control.

namespaces:

The html writer needs to bear in mind both that name & id share the same
name-space, and also that each needs to be unique within the document
(each form control in the document also needs to have a unique name). The
easiest way to do this is to specify both when defining the control.

type=”button”:

type=”reset”:

type=”submit”:

button is a push-button for use with client-side scripting. value gives the
button text-label whilst, typically, onclick would be used to define the
script action. The two snippets below achieve the same result; the second
avoids a non-functioning button for those with JavaScript disabled (the
“explode()” function would also need to be defined in an earlier script
element):

reset + submit will also create buttons with those default actions; the
value attribute is optional, and will over-ride the default browser text for the
button. As with other controls, the name attribute will determine what value
is sent to the server when the button is pressed; this allows multiple ‘submit’
buttons to placed on a form, and for different actions to be taken according to
which one is pressed.

HTML Primer & Reference Guide

<input type="button" value="Blow up your computer" name="explode"
id="explode" onclick="explode()">

<script type="text/javascript">
<!--
 document.write("<input type=\"button\" value=\"Blow up your computer\""
 + "name=\"explode\" id=\"explode\""
 + "onclick=\"explode()\">");
// -->
</script>

91

Reference Guide:- HTML
type=”checkbox”:

type=”radio”:

checked:

value:

checkbox and radio controls share all characteristics with one crucial
difference: only one radio control can be selected at a time, whilst any
checkbox control may be selected. Each is placed in a group by specifying
the same name atribute; note that they will be received at the server in an
array which has the same base name-element as the name attribute (in the
example below as “ice_cream[]”). The value returned is that of the value
attribute for that specific control (empty for non-checked controls).

Some older browsers will insist that one of a radio group is selected at all
times. It is good practice, in any case, to always define one of a radio group as
checked.

Here is a typical usage:

type=”file”:

accept:

(one of the dangerous controls – hackers love to discover if the html writer
has left holes in their security with controls such as this)

This is intended to create a method of uploading a file to the server. value is
intended to specify the name of the initial file, yet is ignored by many
browsers. accept is supposed to be a comma-separated list of acceptable
media types, and is also ignored by many browsers. The specific method and
enctype below are RequiredRequired for this type of action:

HTML Primer & Reference Guide

<p>Please indicate your favourite ice-cream:</p>
<p>
<label accesskey="S"><input type="radio" name="ice_cream"
value="strawberry"><span style="text-
decoration:underline;">Strawberry</label>

<label accesskey="C"><input type="radio" name="ice_cream"
value="chocolate"><span style="text-
decoration:underline;">Chocolate</label>

<label accesskey="V"><input type="radio" name="ice_cream"
value="vanilla"><span style="text-
decoration:underline;">Vanilla</label>

<label accesskey="A"><input type="radio" name="ice_cream" value="all"
checked="checked">All of
them!</label>
</p>

<form method=post action="/dev/null" enctype="multipart/form-data">
<p>Select a document to upload for our urgent attention.</p>
<p><input type="file" name="file" accept="text/plain"></p>
<p><input type="submit" value="hurry!"></p>
</form>

92

Reference Guide:- HTML
type=”hidden”:

hidden controls are not displayed but, in all other respects, are treated as
normal controls; this means that their name+value is submitted together
with all other controls. They are therefore often used to carry information
across between several linked forms.

It is important to realise that hidden controls can be viewed by anyone that
looks at the html source.

type=”image”:

alt, usemap + src:

image defines a graphical submit button; src is then RequiredRequired as the URL
for the image and alt (new in HTML4) as replacement text for those not
loading images. Pre- HTML4 browsers often use name or value as the
replacement for alt, which means specifying all 3 to remain backwards
compatible! Authors will probably want to use button instead, which can
easily have an image specified for it.

When clicked, the co-ordinates of the click are sent together with the form
submission as name.x=x-value and name.y=y-value, where name is the
value of the name attribute, x-value is the click’s pixels from the left of the
image, and y-value is the click's pixels from the top of the image. The
usemap attribute combined with this type defines a client-side image map
that can be used with client-side scripting. The usemap attribute gives the url
of the defining map.

Phew!

type=”password”:

type=”text”:

maxlength + size:

password is a specialised form of text control in which characters input by
the user are masked (often as asterisks) – that is the sole difference. Note,
however, that—unless the page is secure (sent under SSL encryption, shown
by a “https” prefix)—that all form values are sent in clear text, including
password controls.

text is the default form of input control, and specifies a single-line text-
input control. Any value attribute will specify the default text within the
control after creation, whilst size will be a suggestion for the size of the
control and maxlength the maxinum number of characters that it will be
allowed to contain. See also textarea for the multi-line text input control.

HTML Primer & Reference Guide

<input type="hidden" name="oliver" value="is very short">
<input type="hidden" name="rebuttal" value="You are ugly, whilst I am
young and will grow">

93

Reference Guide:- HTML

Important note: it is simplicity itself for a user to evade the restrictions
enforced by browsers with maxlength. It is therefore important for form-
handling script authors to enforce size-limits server-side.

Here is a simple username/password input routine:

HTML Primer & Reference Guide

<p>
<label accesskey="U">User
name: <input type="text" name="username" size=8 maxlength=8></label>

<label accesskey="P"><span style="text-
decoration:underline;">Password: <input type="password" name="pw"
size=12 maxlength=12></label>
</p>

94

Reference Guide:- HTML

ins - Inserted text

Syntax: <ins>...</ins>

Description: ins is normally rendered in a visual browser in underlined text, and is
intended to indicate text inserted in this version of the document It is
unusual in being capable of being either a block-level or an inline element. If
used in an inline context—for example, within a paragraph—it cannot then
contain any block-level elements.

See also: ins, del

Properties:
Content model: Inline or Block

Contained in: Block-level elements, inline elements

Can contain: Block-level elements, inline elements

Standard: HTML 4.01 Strict

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

cite (URI) info on reason for change

datetime date and time of change
(ISO format: “YYYY-MM-DDThh:mm:ssTZD”)

cite:

datetime:

title:

cite + datetime are optionally available to give a url for readers to obtain
further information on the reason for the change (cite) and the time & date
of that change (datetime). W3C states that “they are primarily intended
for private use (e.g. by server-side scripts collecting statistics about a site's
edits), not for readers”. A simpler method to give succinct info is via the
title attribute (see core-attributes).

HTML Primer & Reference Guide 95

Reference Guide:- HTML

isindex - Input prompt

Syntax: <isindex>

Description: isindex is a single line prompt (an input field, equivalent to:
a form with a single input of “type=”text””
a “method=”get””
an action pointing to the url of the containing document

). isindex is deprecated in HTML4 in favour of the input element.

See also: base, isindex, head, link, meta, object, script, style, title

Properties:
Content model: Block

Contained in: applet, blockquote, body, center, dd, del, div,
fieldset, iframe, head, ins, li, map, noframes,
noscript, object, td, th

Can contain: (empty)

Standard: HTML 4.01 Loose, HTML 3.2 Final, HTML 2.0

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

prompt prompt message (effectively, the label)

See also: button, fieldset, form, input, label, legend, optgroup, option,
select, textarea

HTML Primer & Reference Guide 96

Reference Guide:- HTML

kbd - Text to be input

Syntax: <kbd>...</kbd>

Description: kbd text is normally rendered in a visual browser as monospaced text.

See also: abbr, acronym, b, big, cite, code, dfn, em, i, kbd, samp, small,
strong, tt, var

Properties:
Content model: Inline

Contained in: Block-level + Inline elements

Can contain: Inline elements

Standard: HTML 4.01 Strict, HTML 3.2 Final, HTML 2.0

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

HTML Primer & Reference Guide 97

Reference Guide:- HTML

label - Form field label

Syntax: <label>...</label>

Description: label is a main usability aspect of form. The key feature is that the label
must NOT contain (or be associated with) more than one field.

See also: button, fieldset, form, input, label, legend, optgroup, option,
select, textarea

Properties:
Content model: Inline

Contained in: Block-level elements, inline elements except button

Can contain: Inline elements except label

Standard: HTML 4.01 Strict

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

accesskey accessibility key character

for matches field ID value

onblur (script) the element lost the focus

onfocus (script) the element got the focus

The association between label and a control can be implicit (the label
directly contains the field) or explicit – this latter is achieved by the for
attribute (below). The association thus created then assists speech-browser
users whilst also allowing visual browser GUI features: eg clicking on the
label will select the associated radio/checkbox control.

Implicit association:
Below, each of 2 labels contain a radio control, the 1st for “Yes” and the 2nd for
“No”. Each label is therefore implicitly associated with the label that they
contain. A snapshot of what this html code produces within FireFox is below
the code.

The accesskey will allow the radios to be controlled via the keyboard. In
addition, hovering the mouse cursor above either text will highlight the
associated control, and a click will select it.

HTML Primer & Reference Guide 98

Reference Guide:- HTML
Note: these are all inline elements. Therefore, even though the opening label
element, text, radio control and closing label element are all (deliberately) on
different lines, the whole thing is displayed in the browser on the same line:

for:

id:

Explicit association:
It is very common for the label to be separated from the control; in that
situation, the for attribute in the label is used to link with the id attribute in
the control (‘id’ is one of the core-attributes for every element). Below is a
table arrangement, with the results shown below the html:

HTML Primer & Reference Guide

<p>
<label accesskey="Y">
Yes
<input type="radio" name="ice_cream" value="1" checked="checked">
</label>
<label accesskey="N">
<input type="radio" name="ice_cream" value="0">
No
</label>
</p>

<table><tr>
 <td>
 <label for="user" accesskey="u">
 user
 </label>
 </td>
 <td>
 <select name="user" id="user">
 <option>jean</option>
 <option>kim</option>
 <option>brian</option>
 </select>
 </td>
</tr><tr>
 <td>
 <label for="passwd" accesskey="p">
 password
 </label></td>
 <td><input type="password" name="password" id="passwd"></td>
</tr></table>
<p>
 <label accesskey="s">
 <input type="checkbox" name="save" value="yes">
 save user name and
password in a cookie
 </label>
</p>
<p>
 <label accesskey="c">
 comments to post:
 <textarea name="comments" rows=8 cols=50></textarea>
 </label>
</p>

99

Reference Guide:- HTML

HTML Primer & Reference Guide 100

Reference Guide:- HTML

legend - Fieldset caption

Syntax: <legend>...</legend>

Description: legend gives the caption for a group of related controls within a form; it
must be the first item of a fieldset.

See also: button, fieldset, form, input, label, legend, optgroup, option,
select, textarea

Properties:
Content model: Block

Contained in: fieldset

Can contain: Inline elements

Standard: HTML 4.01 Strict

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

accesskey accessibility key character

align (top|bottom|left|right) relative to fieldset (deprecated)

This is what it can look like:

HTML Primer & Reference Guide

<form method="post" action="/cgi-bin/order.cgi">
 <fieldset>
 <legend accesskey="i">contact information</legend>
 <table>
 ...
 </table>
 </fieldset>
</form>

101

Reference Guide:- HTML

li - List item

Syntax: ...

Description: li defines a list item, and is the element that contains the actual content.

See also: li, ol, ul

Properties:
Content model: Block

Contained in: ol, ul

Can contain: Inline elements, block-level elements

Standard: HTML 4.01 Strict, HTML 3.2 Final, HTML 2.0

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

type (both OL + UL types) (deprecated)

value (number) start number for the sequence (deprecated)

type:

value:

Both govern the style of presentation of the bullet, and thus are deprecated in
HTML4.01 Strict. type must be one of the ol.type if contained in an ol, and
one of the ul.type if contained in a ul. Likewise, value only makes sense if
the li is contained within an ol.

See the whole thing for a set of nested li elements in a browser.

HTML Primer & Reference Guide 102

Reference Guide:- HTML

link - Document relationship

Syntax: <link>

Description: link (zero, one or many) defines document relationships. See bottom for
discussion & examples.

See also: base, isindex, head, link, meta, object, script, style, title

Properties:
Content model: Other

Contained in: head

Can contain: (empty)

Standard: HTML 4.01 Strict, HTML 3.2 Final, HTML 2.0

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

charset char encoding of linked resource (RFC2045)

href (URI) URI for linked resource

hreflang language code (RFC1766)

media (1, or comma-separated list) for rendering on these media

rel (LinkTypes) forward link types

rev (LinkTypes) reverse link types

type advisory content type (RFC2045)

rel:

rev:

The W3C authors had a book type of format in mind when these two
attributes were put in place. A handful of examples using some LinkTypes
originally defined in HTML4 should help explain that better:

• <link rel="prev" href="page6182.html" title="My Sister's Annoying habits">

• <link rel="next" href="page6184.html" title="My Sister's Annoying habits">

• <link rel="start" href="page1.html" title="My Sister's Annoying habits">

• <link rel="index" href="index.html" title="My Sister - Index">

(cont. next page)

HTML Primer & Reference Guide 103

http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc1766.txt
http://www.ietf.org/rfc/rfc2045.txt

Reference Guide:- HTML
This above kind of LinkTypes (note: case-insensitive) are almost entirely
ignored by visual browsers and, in my experience, only serve to uselessly
inflate the document size whilst providing lots of urls for hi-speed scrapers;
my general advice would be to ignore them. That advice completely changes
with regard to specific LinkTypes which are required for specific purposes:

rel=apple-touch-icon:

rel=shortcut icon:

These were introduced by Microsoft for MSIE with the ‘shortcut icon’ (and
break the W3C stipulation that LinkTypes should not contain a space) (doh!).
Internet Explorer was ubiquitous at the time, web-server error_logs were
filling up with 404s for missing ‘favicon.ico’ files (intended to be placed at the
root of the web-space, or in a specified location) and, essentially, everyone
jumped on board, so it is now a standard. If the favicon was not specied in
the head browsers would try to find the file—default name: ‘favicon.ico’—in
every wretched sub-directory, so I advise a belt ‘n’ braces action, with a file
called ‘favicon.ico’ in the root of the web-space & also a rel element
specifying an absolute URI for where & what it is.

Apple have taken lessons from MS in non-compliance and added ‘sizes’ as an
extra attribute for use under iOS (iPhone, iPad, iPod, iBall, etc.)
(default: 57x57), but at least their favicon is a PNG file (a well-supported
graphic format), whilst MS went for ICO (another, but poorly-supported,
graphic format – try a favicon generator site). To rub salt in the wound,
Apple will search for four different filenames (I’ve just checked & yup, 2 of
those are in my error logs; grr). ‘apple-touch-icon.png’ is the most widely-
used default name. Advice is the same as for the favicon.

Here are two examples:

<link rel="shortcut icon" href="favicon.ico" type="image/x-icon">
<link rel="apple-touch-icon" href="apple-touch-icon.png" type="image/png">

Notes: the href above is a relative URL, which will rely upon a base
element being used for accurate translation by the browser (see absolute v’s
relative URIs) (or better, as you probably do not want a favicon in every
directory, enter an absolute URI).

rel=StyleSheet:

rel=alternate stylesheet:

Coupled together with a meta element, this is the advised method for
including an external StyleSheet in to the document. Here is an example:

<meta http-equiv="Content-Style-Type" content="text/css">
<link rel="StyleSheet" href="style.css" type="text/css"
media="screen,projection,print">

Notes: the href above is a relative URL, which may rely upon a base
element being used for accurate translation by the browser (see absolute v’s
relative URIs) (or better, as you probably do not want a style document in
every directory, enter an absolute URI). See also attaching style to HTML.

HTML Primer & Reference Guide 104

https://developer.apple.com/library/ios/documentation/AppleApplications/Reference/SafariWebContent/ConfiguringWebApplications/ConfiguringWebApplications.html
http://favicon.co.uk/
http://forums.modem-help.co.uk/abuse.php?log=0

Reference Guide:- HTML

map – Image map

Syntax: <map name=”mapname”>...</map>

Description: map is a client-side image map. The RequiredRequired name attribute is used as an
anchor for the usemap attribute of an img or object.

HTML4 has extended the map element so that it can contain one or more
block-level elements—such as object—in addition to the area element.

See also: a, bdo, br, img, map, object, q, script, span, sub, sup

Properties:
Content model: Inline

Contained in: Block-level + inline elements

Can contain: One or more block-level, or one or more area elements

Standard: HTML 4.01 Strict, HTML 3.2 Final

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

name for reference by usemap RequiredRequired

Here is a typical pre- HTML4 usage of map:

HTML Primer & Reference Guide

<map name="mymap">
<area href="/reference/" alt="html and css reference" coords="5,5,95,195">
<area href="/design/" alt="design guide" coords="105,5,195,195">
<area href="/tools/" alt="tools" coords="205,5,295,195">
</map>
<img src="sitemap.gif" alt="site map" usemap="#mymap" width=300
height=200>

105

Reference Guide:- HTML

menu - Menu list

Syntax: <menu>...</menu>

Description: menu is an unordered.list of items for a menu (deprecated in HTML 4 Strict
in favour of ul). Note that the contained li elements are NOT allowed to
contain block-level elements, which prevents cascading menus.

See also: dir, li, menu, ol, ul

Properties:
Content model: Block

Contained in: applet, blockquote, body, button, center, dd, del,
div, fieldset, form, iframe, ins, li, map, noframes,
noscript, object, td, th

Can contain: One or more li elements (which cannot contain block-level
elements)

Standard: HTML 4.01 Loose, HTML 3.2 Final, HTML 2.0

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

compact display in a compact style (deprecated)

compact:

compact is poorly supported by browsers.

HTML Primer & Reference Guide 106

Reference Guide:- HTML

meta – Metadata

Syntax: <meta>

Description: meta (zero, one or many) defines generic metainformation. The W3C never
defines what this might be.

See also: base, isindex, head, link, meta, object, script, style, title

Properties:
Content model: Other

Contained in: head

Can contain: (empty)

Standard: HTML 4.01 Strict, HTML 3.2 Final, HTML 2.0

Attributes:
i18n: - see language-attributes

content associated information RequiredRequired

http-equiv HTTP response header name

name metainformation name

scheme select form of content (rarely used)

Certain meta elements have become de rigueur in every html document:
content:
name:

name/content are the classic name/value pairings found throughout this
PDF. content can contain text or entities but never HTML tags. The following
are typical but never required:

name=author:

Everyone likes their work to be recognised.

name=description:
name=keywords:

SEs (“Search Engines”) will often use all/part of the description in the SERPs
(“Search Engine Results Pages”). Keep it concise.

Keywords (comma-separated values) have become much abused across the
years; SEs will penalise the page if you practise keyword-stuffing.

HTML Primer & Reference Guide 107

Reference Guide:- HTML
name=robots:

You need a file called ‘robots.txt’ in the root of your web-space. Please be
aware that there are bots that give a little back after scraping your site
(“goodbots”) & others that are scraping your site for their sole benefit
(“badbots”). In particular, using robots.txt to detail all the sensitive
directories on your site is a gift to the badbots.

‘robots.txt’ is a site-wide declaration for general and/or specific bots. If you
wish to make a page-specific declaration it can be done via the name attribute
(note: the page needs then to be accessible to the bots):

• <meta name="robots" content="...,...">

‘robots’ declares that this declaration is for all bots. Use the bot-specific name
to direct it at a specific bot (try robotstxt.org for a list).

content (comma-separated, case-insensitive values) are the directives.
There are zero directives in law; what exist are through convention & usage.
The following are generally agreed, and for best in one statement:

• all
= “index, follow”
no restrictions; robots consider this to be the default

• noindex
noshow in SERPs + no ‘cached’ link

• nofollow
do not follow the links on this page

• none
= “noindex, nofollow”

http-equiv:

(The value is case-sensitive)
HTML documents transmitted across the Internet are sent via the HTTP
protocol (“Hypertext Transfer Protocol”). HTTP packets have a Header+Body
format just like the HTML documents that they contain. The document itself is
placed within the body of those packets, whilst the header contains important
metadata about content within the body. A Web Browser makes use of both
HTTP headers & body in making decisions on how it will render the HTML
document into a web-page.

Ideally, an HTML writer needs to have control over both parts of the HTTP
packets; the meta element + http-equiv attribute offers a possibility of
doing this even if—as one example—the HTML document is being sent via
email. Some web-servers can be configured to auto-send HTTP headers that
are contained within the meta element, whilst most browsers will also take
account of this element. Even if yours is a dedicated server, this author
advises a belt ‘n’ braces approach (send headers + include meta statements)
as long as the two do not conflict.

http-equiv=Content-Type:

This is one of the valuable declarations, but can have a downside if the
charset is different to the browser default, in which case it may re-load the
page (one of many where the HTTP headers are essential). Here is an example:

• <meta http-equiv="Content-Type" content="text/html; charset=utf-8">

HTML Primer & Reference Guide 108

http://www.robotstxt.org/
http://forums.modem-help.co.uk/abuse.php?log=0
http://www.robotstxt.org/meta.html
http://www.robotstxt.org/meta.html
http://www.robotstxt.org/meta.html

Reference Guide:- HTML
http-equiv=Content-Script-Type:

This is necessary to include inline JavaScript script.
• <meta http-equiv="Content-Script-Type" content="text/javascript">

http-equiv=Content-Style-Type:

This is necessary to include inline style. See also link rel=StyleSheet for
loading an external CSS file:

• <meta http-equiv="Content-Style-Type" content="text/css">

http-equiv=Refresh:

This can be controversial, messes up the browser history (and thus the ‘Back’
button), has been much misused in the past and can also lead to the SEs
penalising the page (particularly for short-duration refreshes).

It will cause the page to be refreshed after the interval marked (in seconds),
optionally loading a completely different page (making the first page a kind of
“splash screen”). You should note that most modern browsers default to “no-
refresh”:

• <meta http-equiv="Refresh" content="10; url=/another.html">

HTML Primer & Reference Guide 109

Reference Guide:- HTML

noframes - Frames alternate content

Syntax: <noframes>...</noframes>

Description: noframes is designed for content to be shown when frames cannot be
shown (in this way it is the frames equivalent of noscript). The W3C advice
is to always have a noframes section in a Frameset document.

See also: body, frame, frameset, head, iframe, noframes, noscript

Properties:
Content model: Block

Contained in: applet, blockquote, body, button, center, dd, del,
div, fieldset, form, iframe, ins, li, map, noframes,
noscript, object, td, th

Can contain: 4.01 Loose: block-level elements, inline elements
4.01 Frameset: one body element, which must NOT contain
any noframes elements

Standard: HTML 4.01 Frameset

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

how to hack-off your users:

All the Frameset elements are new in HTML4, which meant at HTML4
introduction that all previous (html3.2 & earlier) browsers did not present
the frames correctly. Many html authors put a message in noframes saying:
“Upgrade your browser”. Some of the new HTML4 browsers made it possible
for their users to switch frames-display off meaning that, for these folks,
“Upgrade your browser” was all that they saw. Now, make a careful note of
this; should you ever want to utterly wind up your user-base, that is a
perfectly wonderful way to do it.

a guide to content:

A set of links to the other frames (frame.src URLs) is probably enough.

noframes in 4 Transitional:

Probably a good idea, if only the browser will support it (it will always show
the noframes content if not).

See how the W3C frames it for the full picture.

HTML Primer & Reference Guide 110

Reference Guide:- HTML

noscript - Alternate script content

Syntax: <noscript>...</noscript>

Description: noscript is... odd.

See also: script

Properties:
Content model: Block

Contained in: applet, blockquote, body, button, center, dd, del,
div, fieldset, form, iframe, ins, li, map, noframes,
noscript, object, td, th

Can contain: Block-level elements, inline elements

Standard: HTML 4.01 Strict

The W3C describes noscript as an “alternate content container for non
script-based rendering”. It is customary to place it within the html
immediately following any script element, but note that there is zero
connection within the DTD between the two; effectively, that means that
there should only be one pair of noscript tags within a document. Today,
most html authors appear to use this element to warn the visitor that they
will not see anything on the page unless scripting is enabled in their browser.

One issue arises if the browser has scripting enabled but does not support the
specific language, when browsers may fail to support noscript (a browser
with client-side scripting disabled should be unaffected).

HTML Primer & Reference Guide 111

Reference Guide:- HTML

object – Object

Syntax: <object>...</object>

Description: object is a generic embedded object. It was intended to replace the img +
applet elements & particularly proprietary elements such as the Netscape
embed or Microsoft bgsound.

See also: param
See also: base, isindex, head, link, meta, object, script, style, title
See also: a, bdo, br, img, map, object, q, script, span, sub, sup

Properties:
Content model: Inline

Contained in: Block-level + inline elements

Can contain: One or more block-level, or one or more area elements

Standard: HTML 4.01 Strict

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

align vertical or horizontal alignment (deprecated)

archive space-separated list of URIs

border link border width (deprecated)

classid identifies an implementation

codebase base URI for classid, data, archive

codetype content type for code

data reference to object's data

declare declare but don't instantiate flag

height (pixels or %) override height

hspace horizontal gutter (deprecated)

name submit as part of form

standby message to show while loading

tabindex position in tabbing order

type content type for data

usemap use client-side image map

vspace vertical gutter (deprecated)

width (pixels or %) override width

HTML Primer & Reference Guide 112

Reference Guide:- HTML

ol - Ordered list

Syntax: ...

Description: ol is an ordered.list of items. A browser will normally supply the numbering
for the content.

See also: li, ol, ul

Properties:
Content model: Block

Contained in: applet, blockquote, body, button, center, dd, del,
div, fieldset, form, iframe, ins, li, map, noframes,
noscript, object, td, th

Can contain: One or more li elements

Standard: HTML 4.01 Strict, HTML 3.2 Final, HTML 2.0

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

compact display in a compact style (deprecated)

start (number) (default: 1)
start number for the sequence (deprecated)

type (1|a|A|i|I) style for bullet (deprecated)

type:

type governs the style of presentation of the bullet allotted to the contained
li elements, and thus is deprecated in HTML4.01 Strict. The value is a single
digit, and these are interpreted as follows:

1 arabic numbers 1, 2, 3, ...
a lower alpha a, b, c, ...
A upper alpha A, B, C, ...
i lower roman i, ii, iii, ...
I upper roman I, II, III, ...

See the whole thing for a set of nested li elements in a browser.

HTML Primer & Reference Guide 113

Reference Guide:- HTML

optgroup - Option group

Syntax: <optgroup label=”(text)”>...</optgroup>

Description: select, optgroup and option together are intended to create a cascading
set of menus.

See also: button, fieldset, form, input, label, legend, optgroup, option,
select, textarea

Properties:
Content model: Inline

Contained in: select

Can contain: One or more option elements

Standard: HTML 4.01 Strict

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

disabled

label for use in hierarchical menus RequiredRequired

See next page for a demonstration...

HTML Primer & Reference Guide 114

Reference Guide:- HTML
label:

label is RequiredRequired on optgroup but optional on option. The easiest way
to explain these is to demonstrate it (as below). Note the use of selected
with an empty value to provide a default heading to the menu group:

...and the result in a browser:

...with many thanks to Dennetts of Spilsby for some delicious suggestions!

HTML Primer & Reference Guide

<p>What is your favourite ice-cream?
 <select name="ice_cream">
 <option selected="selected" value="">Choose your favourite...</option>
 <optgroup label="Traditional">
 <option value="choc">Chocolate</option>
 <option value="vanilla">Vanilla</option>
 </optgroup>
 <optgroup label="Tangy" disabled="disabled">
 <option value="toffee">Toffee</option>
 <option value="amaretto">Amaretto</option>
 </optgroup>
 <optgroup label="Tantalising">
 <option value="irish">Irish Cream & White Chocolate</option>
 <option value="lemon">Lemon Meringue</option>
 </optgroup>
 <option>All of them!</option>
 </select>
</p>

115

Reference Guide:- HTML

option - Menu option

Syntax: <option>...</option>

Description: option is the menu option(s) available within a menu.

See also: button, fieldset, form, input, label, legend, optgroup, option,
select, textarea

Properties:
Content model: Inline

Contained in: select

Can contain: One or more option elements

Standard: HTML 4.01 Strict, HTML 3.2 Final, HTML 2.0

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

disabled

label for use in hierarchical menus

selected default selected value

value defaults to element content

selected:

The option marked as selected will be pre-selected at menu construction.
Sometimes, you do not want any option to be selected (allowing a possible
NULL response) and, in addition, may want to give a short hint at the top of
the menu. Using “selected value=""” will achieve that.

value:

On form submission, the value of the selected option will be posted. If
value is missing, then the (text) content of the option is sent instead.

See the page following optgroup for a full demonstration...

HTML Primer & Reference Guide 116

Reference Guide:- HTML

p – Paragraph

Syntax: <p>...</p>

Description: p defines a paragraph element. One curiosity is that it can only contain
inline elements, and another is that the end-tag is optional with html
(although that can then lead to stylesheet bugs with some browsers).

See also: address, blockquote, div, dl, fieldset, form, hr, noscript, p,
table

Properties:
Content model: Block

Contained in: applet, blockquote, body, button, center, dd, del,
div, fieldset, form, iframe, ins, li, map, noframes,
noscript, object, td, th

Can contain: Inline elements

Standard: HTML 4.01 Strict, HTML 3.2 Final, HTML 2.0

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

align (left|center|right|justify)
horizontal alignment of content (deprecated)

HTML Primer & Reference Guide 117

Reference Guide:- HTML

param - Object parameter

Syntax: <param name=”(the_name)”>

Description: param is a “named property value”. It is designed to provide parameter
values to the applet or object element that contains it, and MUST be the
first content within that element. id / name is the name of the parameter,
whilst value is it’s value.

See also: object

Properties:
Content model: Other

Contained in: applet, object

Can contain: (empty)

Standard: HTML 4.01 Strict, HTML 3.2 Final

Attributes:
id document-wide unique id (also a core-attribute)

name property name

type content type for value when valuetype=”ref”
(RFC2045)

value property value

valuetype (data|object|ref) (default: data) How to interpret value

id:

name:

The html author needs to bear in mind both that name & id share the same
name-space, and also that each needs to be unique within the document. The
simplest method is always to specify both whenever either are used.

HTML Primer & Reference Guide 118

http://www.ietf.org/rfc/rfc2045.txt

Reference Guide:- HTML

pre - Pre-formatted text

Syntax: <pre>...</pre>

Description: pre contains preformatted text. Importantly, pre does NOT collapse
whitespace and (unfortunately) will not wordwrap (that latter can be
overcome with some style black magic) which can lead to side-scanning if the
screen width is insufficient.

Under the hood, several inline elements are excluded, preventing any markup
that will involve changes in font size or inclusion of images.

Properties:
Content model: Block

Contained in: applet, blockquote, body, button, center, dd, del,
div, fieldset, form, iframe, ins, li, map, noframes,
noscript, object, td, th

Can contain: Inline elements except applet, basefont, big, font,
img, object, small, sub, sup

Standard: HTML 4.01 Strict, HTML 3.2 Final, HTML 2.0

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

width expected line length (deprecated) (ignored by browsers)

width:

width is ignored by browsers and, in any case, deprecated in HTML4 Strict. If
that was not enough, it is a NUMBER, which immediately says “of what?”
(pixels, em, en, inches, ...) (probably characters, but who knows? as it is never
specified).

HTML Primer & Reference Guide 119

Reference Guide:- HTML

q - Short Quotation

Syntax: <q>...</q>

Description: q text is intended to be a short, inline quotation; use blockquote for longer,
block-level quotations.

See also: a, bdo, br, img, map, object, q, script, span, sub, sup

Properties:
Content model: Inline

Contained in: Block-level + Inline elements

Can contain: Inline elements

Standard: HTML 4.01 Strict

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

cite URI of the source of the quotation.

HTML Primer & Reference Guide 120

Reference Guide:- HTML

s - Strike-through text

Syntax: <s>...</s>

Description: s is normally rendered in a visual browser in a strike-through style.

See also: abbr, acronym, b, big, cite, code, dfn, em, i, kbd, samp, small,
strong, tt, var

Properties:
Content model: Inline

Contained in: Block-level + Inline elements

Can contain: Inline elements

Standard: HTML 4.01 Loose (deprecated in HTML4)

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

 See also strike

HTML Primer & Reference Guide 121

Reference Guide:- HTML

samp - Sample output

Syntax: <samp>...</samp>

Description: samp text is normally rendered in a visual browser as monospaced text.

See also: abbr, acronym, b, big, cite, code, dfn, em, i, kbd, samp, small,
strong, tt, var

Properties:
Content model: Inline

Contained in: Block-level + inline elements

Can contain: Inline elements

Standard: HTML 4.01 Strict, HTML 3.2 Final, HTML 2.0

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

HTML Primer & Reference Guide 122

Reference Guide:- HTML

script - Client-side script

Syntax: <script type="text/javascript">...</script>

Description: script is intended to include client-side script(s) in the document.

See also: base, isindex, head, link, meta, object, script, style, title

Properties:
Content model: Inline

Contained in: head, block-level + inline elements

Can contain: Inline elements

Standard: HTML 4.01 Strict, HTML 3.2 Final

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

charset char encoding of linked resource (RFC2045)

defer UA may defer execution of script

language predefined script language name (deprecated)

src URI for an external script

type content type of script language (RFC2045) RequiredRequired

See also: noscript
See also: a, bdo, br, img, map, object, q, script, span, sub, sup

Client-side scripts are used (and mis-used) to create greater utility within
html documents. They are also the single greatest vector for abuse of multiple
kinds. For that reason, the author would strongly advise you to make use of
noscript in your browser, and also to bear in mind that the user may well
prevent use of Script in their browser.

HTML Primer & Reference Guide 123

http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt

Reference Guide:- HTML

select - Option selector

Syntax: <select>...</select>

Description: select defines a form control (menu) for the selection of options. Before
HTML4 these had to be defined within a form.

See also: button, fieldset, form, input, label, legend, optgroup, option,
select, textarea

Properties:
Content model: Inline

Contained in: Block-level elements, inline elements except button

Can contain: One or more optgroup or option elements

Standard: HTML 4.01 Strict, HTML 3.2 Final, HTML 2.0

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

disabled

multiple default is single selection

name field name

onblur (script) the element lost the focus

onchange (script) the element value was changed

onfocus (script) the element got the focus

size # rows visible

tabindex position in tabbing order

multiple:
name:

The default is for just one option allowed to be selected. On submission,
name/value pairs are sent: name is used for the name, whether as a single or
as multiple pairs; see option for the value part.

size:

size suggests to visual browsers how many options should be on-screen at
any one time, with a scroll-bar to get access to any others.

See the page following optgroup for a full demonstration...

HTML Primer & Reference Guide 124

Reference Guide:- HTML

small - Small text

Syntax: <small>...</small>

Description: small is normally rendered in a visual browser in a smaller font size. It is also
possible to nest this element, which can lead to unpredictable results, as you
cannot be certain of the reader’s starting font size.

See also: abbr, acronym, b, big, cite, code, dfn, em, i, kbd, samp, small,
strong, tt, var

Properties:
Content model: Inline

Contained in: Block-level except pre + inline elements

Can contain: Inline elements

Standard: HTML 4.01 Strict, HTML 3.2 Final

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

HTML Primer & Reference Guide 125

Reference Guide:- HTML

span - Generic inline container

Syntax: ...

Description: span is typically used to apply style to inline elements; see div for the
identical application for block-level elements.

See also: a, bdo, br, img, map, object, q, script, span, sub, sup

Properties:
Content model: Inline

Contained in: Block-level + inline elements

Can contain: Inline elements

Standard: HTML 4.01 Strict

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

HTML Primer & Reference Guide 126

Reference Guide:- HTML

strike - Strike-through text

Syntax: <strike>...</strike>

Description: strike is normally rendered in a visual browser in a strike-through style.
See del as a possible HTML4 replacement.

See also: abbr, acronym, b, big, cite, code, dfn, em, i, kbd, samp, small,
strong, tt, var

Properties:
Content model: Inline

Contained in: Block-level + inline elements

Can contain: Inline elements

Standard: HTML 4.01 Loose (deprecated in HTML4), HTML 3.2 Final

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

HTML Primer & Reference Guide 127

Reference Guide:- HTML

strong - Strong emphasis

Syntax: ...

Description: Bold and strong text are normally rendered the same in visual
browsers.

See also: abbr, acronym, b, big, cite, code, dfn, em, i, kbd, samp, small,
strong, tt, var

Properties:
Content model: Inline

Contained in: Block-level + inline elements

Can contain: Inline elements

Standard: HTML 4.01 Strict, HTML 3.2 Final, HTML 2.0

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

HTML Primer & Reference Guide 128

Reference Guide:- HTML

style - Embedded style sheet

Syntax: <style>...</style>

Description: style (zero, one or many) embeds a StyleSheet in the document.

See also: base, isindex, head, link, meta, object, script, style, title

Properties:
Content model: Other

Contained in: html

Can contain: (embedded stylesheet)

Standard: HTML 4.01 Strict, HTML 3.2 Final

Attributes:
i18n: - see language-attributes (for use with title)

media designed for use with these media

title advisory title

type content type of style language (RFC2045) RequiredRequired

media:

(Single or comma-separated list of media descriptors) With minimal original
support by browsers, media is intended to specify the display device upon
which the StyleSheet should be supported.

Note: Navigator4 ignores any other than ‘screen’ whilst Opera needs ‘projection’ for
full-screen. The following were defined in HTML4 (but not in 4.01):

• all for all devices
• aural for speech synthesizers
• braille for braille tactile feedback devices
• handheld for handheld devices

(characterized by a small, monochrome display and limited
bandwidth) (this was well before the iPhone, etc.)

• print for output to a printer
• projection for projectors
• screen (default) for non-paged computer screens
• tty for fixed-pitch character grid displays (eg. Lynx)
• tv for television-type devices; low-res & limited scroll

title:

The intention was to allow a user to selectively enable/disable particular
sheets; this is minimally supported amongst browsers. Multiple sheets with
the same title are considered to be the same StyleSheet.

HTML Primer & Reference Guide 129

http://www.ietf.org/rfc/rfc2045.txt

Reference Guide:- HTML
type:

This is always “text/css”.

See also link.rel=StyleSheet for including an external StyleSheet.

HTML Primer & Reference Guide 130

Reference Guide:- HTML

sub – Subscript

Syntax: _{...}

Description: sub (and sup) can completely ruin the run of normal text-lines, so use with

some care.

See also: a, bdo, br, img, map, object, q, script, span, sub, sup

Properties:
Content model: Inline

Contained in: Block-level + inline elements

Can contain: Inline elements

Standard: HTML 4.01 Strict, HTML 3.2 Final

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

HTML Primer & Reference Guide 131

Reference Guide:- HTML

sup – Superscript

Syntax: ^{...}

Description: sup (and sub) can completely ruin the run of normal text-lines, so use with

some care.

See also: a, bdo, br, img, map, object, q, script, span, sub, sup

Properties:
Content model: Inline

Contained in: Block-level + inline elements

Can contain: Inline elements

Standard: HTML 4.01 Strict, HTML 3.2 Final

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

HTML Primer & Reference Guide 132

Reference Guide:- HTML

table – Table

Syntax: <table>...</table>

Description: table defines a tabular block of row-and-columnar data. The place where a
row & column meet is called a “data cell” (td or th) and, because any data
cell can also contain a table, it becomes possible to display some very
complex, multi-dimensional data.

See also: address, blockquote, div, dl, fieldset, form, hr, noscript, p,
table

Properties:
Content model: Block

Contained in: applet, blockquote, body, button, center, dd, del,
div, fieldset, form, iframe, ins, li, map, noframes,
noscript, object, td, th

Can contain: An optional caption, followed by zero or more col and
colgroup elements, followed by an optional thead
element, an optional tfoot element, and then one or more
tbody elements

Standard: HTML 4.01 Strict, HTML 3.2 Final

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

align (left|center|right)
table position relative to window (deprecated)

bgcolor (sRGB colours) background colour for cells (deprecated)

border (pixels) controls frame width around table

cellpadding (pixels or %) spacing within cells

cellspacing (pixels or %) spacing between cells

frame (void|above|below|hsides|lhs|rhs|vsides|box|border)
which parts of frame to render

rules (none|groups|rows|cols|all)
rulings between rows and cols

summary purpose/structure for speech output

width (pixels or %) table width

See also: caption, col, colgroup, tbody, table, td, tfoot, th, thead, tr

HTML Primer & Reference Guide 133

Reference Guide:- HTML
align:

bgcolor:

These are deprecated in HTML 4.01 Strict, and are mentioned here only
because, before HTML4, table became notorious for being used as a layout
device for entire documents. One of the main design purposes in the
introduction of HTML4 was to separate the aspect of SGML presentation from
the markup, and this latter was achieved by the introduction of style and
stylesheets (CSS). As mentioned elsewhere, HTML4 Loose was designed as a
halfway-house (detox) whilst older html authors made the transition to using
HTML4. All elements & attributes marked as ‘deprecated’ in this PDF will
validate under a HTML4 Loose DTD but will fail under HTML4 Strict.

So, what is wrong with table being used as a layout device? Well, apart from
producing pages that look more than a bit naff, tables have an inherent
problem for users that use narrow windows, or need large fonts, or use non-
visual browsers. Even for visual browsers, most will not display very much of
a table until that entire markup has been downloaded which—and especially
on a bad connection—can lead to a noticeable delay. Most new visitors—if the
view window does not fill up quickly—these days will just press the back-
button & try elsewhere.

There is only one thing that this author has found that a table can do that CSS
cannot, and that is vertically align content in a space
(“<td valign=”middle”>”) (although it has to be said that some other
layout with CSS is also a bit of a black art).

border:

frame:

These 2 attributes .together govern whether the table’s outer border is visible,
and which sides, and by what width. As always, CSS will offer far better
control. These are the possible values for frame:

• void no border (default unless border>0)
• above top only
• bottom bottom only
• hsides left & right only
• vsides top & bottom only
• lhs left only
• rhs right only
• box/border border on all sides (default if border>0)

<table border> is a valid, reliable shorthand for <table frame=”border”>
cellpadding:

cellspacing:

These 2 attributes .can help to make the difference between a crowded layout
& a more professional display. ‘padding’ is the space between the cell border
& the content within it, whilst ‘spacing’ is the distance between adjacent cells.
Take care! some (older) browsers will not support ‘%’ here.

width:

Using pixels for width can be very dangerous in most cases, as you cannot be
sure of the width of the user’s screen, so best to use ‘%’ if at all.

HTML Primer & Reference Guide 134

Reference Guide:- HTML
The whole thing:

The simplest possible table is really simple (and probably not very useful):

Here is a much more complex example using most elements, with default
browser style (a “border rules="all"” attributes have been added so that
you can discern all the individual cells) (see below the html code):

HTML Primer & Reference Guide

<table>
 <tr>
 <td>Hello</td>
 </tr>
</table>

<table border rules="all" cellpadding=4>
 <caption>Programs Available</caption>
 <colgroup class="program-discipline">
 <colgroup class="program-type" span=5>
 <thead>
 <tr>
 <th scope="col">Program</th>
 <th scope="col">Honors Co-op</th>
 <th scope="col">Honors Regular</th>
 <th scope="col">General Regular</th>
 <th scope="col">*Preprofessional or Professional</th>
 </tr>
 </thead>
 <tfoot class="footnote">
 <tr>
 <td colspan=5>
 Many disciplines are also available as Minors and Joint Honors
programs.
 </td>
 </tr>
 <tr>
 <td colspan=5>
 * Preprofessional programs normally fulfull the academic
requirements for registration in the related professions.
 </td>
 </tr>
 </tfoot>
 <tbody>
 <tr>
 <td scope="row">Computer Science</td>
 <td>yes</td>
 <td>yes</td>
 <td>no</td>
 <td>no</td>
 </tr>
 </tbody>
</table>

135

Reference Guide:- HTML

HTML Primer & Reference Guide 136

Reference Guide:- HTML

tbody - Table body

Syntax: <tbody>...<tbody>

Description: The optional thead , tfoot & tbody are intended by the HTML4 designers as
structural elements within tables, grouping common elements together. The
vision was that browsers would provide a scrolling region for the body of long
tables & fixed sections at head & foot. Instead, much as with col &
colgroup, the early HTML4 browsers decided simply to ignore them.

See also: caption, col, colgroup, tbody, table, td, tfoot, th, thead, tr

Properties:
Content model: Block

Contained in: table

Can contain: One or more tr elements

Standard: HTML 4.01 Strict

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

align (left|center|right|justify|char)
horizontal alignment of cells (deprecated)

char (default: ‘.’) char value if align=char

charoff (pixels or %) offset in cell to char if align=char

valign (top|middle|bottom|baseline) vertical alignment of cells

The HTML order must be thead,.tfoot then tbody (all are optional) (the
intention is to try to avoid rendering delays). See table: the whole thing for
most of the elements of table assembled together.

Note: the scope attribute of th and/or tr elements offers a simpler
alternative to tbody, whilst missing the CSS/script opportunities.

HTML Primer & Reference Guide 137

Reference Guide:- HTML

td - Table data cell

Syntax: <td>...<td>

Description: These are header (th) or data (td) cells (if the cell’s content is both, then a
td should be used) (however, the split aids in both table structure &
presentation, even though the attributes for each are identical).

See also: caption, col, colgroup, tbody, table, td, tfoot, th, thead, tr

Properties:
Content model: Block

Contained in: tr

Can contain: Inline elements, block-level elements

Standard: HTML 4.01 Strict, HTML 3.2 Final

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

abbr abbreviation for header cell

align (left|center|right|justify|char)
horizontal alignment of cells (deprecated)

axis comma-separated list of related headers

bgcolor (sRGB colours) background colour for cell (deprecated)

char (default: ‘.’) char value if align=char

charoff (pixels or %) offset in cell to char if align=char

colspan (default: 1) number of cols spanned by cell

headers list of id’s for header cells

height (pixels or %) height for cell (deprecated)

nowrap suppress word wrap (deprecated)

rowspan (default: 1) number of rows spanned by cell

scope (row|col|rowgroup|colgroup) scope covered by header cells

valign (top|middle|bottom|baseline) vertical alignment of cells

width (pixels or %) width for cell (deprecated)

Note1: a cell may be empty, although visual browsers may then give it a naff
presentation (as if to tick you off), so always include at least a space.

HTML Primer & Reference Guide 138

Reference Guide:- HTML
Note2: a cell may contain another table, (or any other block-level element)
giving rise to (possibly) very complex tables.

abbr:

axis:

headers:

scope:

(all new at HTML4) headers + scope have a similar purpose, with scope
being the simpler of the two; all 4 attributes are designed for cells that
provide header information (with axis also having a broader application).

HTML4 has removed the earlier distinction between th & td to a presentation
level (through stylesheets). Both are intended to be data cells, and their
attributes are thus identical. For common structure/presentation in
extremely large tables, HTML4 provides col & colgroup. For a simple
method of structure/presentation in smaller tables it provides scope and for
full control it gives td.headers.

abbr: a precis of the cell’s contents (to be shown whilst the table loads, etc.).
scope: the data cells for which this cell provides header information; one of:

• col
• colgroup
• row
• rowgroup

headers: the header cell(s) which provide header information for this cell
(inverse of scope). The value is a list of the header-cell id’s.
axis: the W3c says: “This attribute may be used to place a cell into
conceptual categories that can be considered to form axes in an n-
dimensional space” (wtf?).

To the best of my knowledge, browser designers have mostly ignored
everything written in this section, and have failed to implement any (or most)
of what HTML4 hoped for in that regard. They appear to have decided that, at
this point, the HTML4 designers had disappeared up their own axis.

colspan:

rowspan:

(default 1) It is possible to have a value of ‘0’ (zero), which is intended to
mean “all cols|rows from here to the end” - beware of the value of dir in that.
However, it was ignored by most HTML4 browsers.

Some practical advice: it is very easy, as you build bigger tables, to make
mistakes with these 2 attributes. Always test out your layout before entering
any data.

See table: the whole thing for most of the elements of table assembled
together.

HTML Primer & Reference Guide 139

Reference Guide:- HTML

textarea - Multi-line text input

Syntax: <textarea>...</textarea>

Description: textarea defines a multi-line text-input control (see also input
type=text for the single-line text-input control).

See also: button, fieldset, form, input, label, legend, optgroup, option,
select, textarea

Properties:
Content model: Inline

Contained in: Block-level elements, inline elements except button

Can contain: Plain text (which includes entities)

Standard: HTML 4.01 Strict, HTML 3.2 Final, HTML 2.0

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

accesskey accessibility key character

cols # of columns

disabled

name field name

onblur (script) the element lost the focus

onchange (script) the element value was changed

onfocus (script) the element got the focus

onselect (script) some text was selected

readonly (new in HTML4)

rows # of rows

tabindex position in tabbing order

Any initial content—which must NOT contain any html tags—is treated by
browsers as the default content on construction. On submission, the usual
name/value pair is submitted; the name attribute is the key whilst current
content is the value. Before HTML4 these had to be defined within a form.

HTML Primer & Reference Guide 140

Reference Guide:- HTML
cols:

rows:

One important feature to understand is that these two attributes govern only
the visual appearance of the control, and not the amount of text that can be
entered by the user, which in theory is unlimited, although some browsers
will limit the amount to 32k or 64k. In addition, the mysql DB will typically
store an absolute max of 64kB in a TEXT field, which then can drop
drastically if UTF8 to 21,844 characters.

Ultimately, the author of the server-side routines that process form
submissions is responsible for all checks & restrictions on data received from
form submissions and, with textarea, size needs to be one of those checks.

HTML Primer & Reference Guide 141

Reference Guide:- HTML

tfoot - Table foot

Syntax: <tfoot>...<tfoot>

Description: The optional thead , tfoot & tbody are intended by the HTML4 designers as
structural elements within tables, grouping common elements together. The
vision was that browsers would provide a scrolling region for the body of long
tables & fixed sections at head & foot. Instead, much as with col &
colgroup, the early HTML4 browsers decided simply to ignore them.

See also: caption, col, colgroup, tbody, table, td, tfoot, th, thead, tr

Properties:
Content model: Block

Contained in: table

Can contain: One or more tr elements

Standard: HTML 4.01 Strict

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

align (left|center|right|justify|char)
horizontal alignment of cells (deprecated)

char (default: ‘.’) char value if align=char

charoff (pixels or %) offset in cell to char if align=char

valign (top|middle|bottom|baseline) vertical alignment of cells

The HTML order must be thead,.tfoot then tbody (all are optional) (the
intention is to try to avoid rendering delays). See table: the whole thing for
most of the elements of table assembled together.

Note: the scope attribute of th and/or tr elements offers a simpler
alternative to tfoot, whilst missing the CSS/script opportunities.

HTML Primer & Reference Guide

Reference Guide:- HTML

th - Table header cell

Syntax: <th>...<th>

Description: These are header (th) or data (td) cells (if the cell’s content is both, then a
td should be used) (however, the split aids in both table structure &
presentation, even though the attributes for each are identical).

See also: caption, col, colgroup, tbody, table, td, tfoot, th, thead, tr

Properties:
Content model: Block

Contained in: tr

Can contain: Inline elements, block-level elements

Standard: HTML 4.01 Strict, HTML 3.2 Final

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

abbr abbreviation for header cell

align (left|center|right|justify|char)
horizontal alignment of cells (deprecated)

axis comma-separated list of related headers

bgcolor (sRGB colours) background colour for cell (deprecated)

char (default: ‘.’) char value if align=char

charoff (pixels or %) offset in cell to char if align=char

colspan number of cols spanned by cell

headers list of id’s for header cells

height (pixels or %) height for cell (deprecated)

nowrap suppress word wrap (deprecated)

rowspan number of rows spanned by cell

scope (row|col|rowgroup|colgroup) scope covered by header cells

valign (top|middle|bottom|baseline) vertical alignment of cells

width (pixels or %) width for cell (deprecated)

Note1: a cell may be empty, although visual browsers may then give it a naff
presentation (as if to tick you off), so always include at least a space.

HTML Primer & Reference Guide 143

Reference Guide:- HTML
Note2: a cell may contain another table, (or any other block-level element)
giving rise to (possibly) very complex tables.

abbr:

axis:

headers:

scope:

headers + scope (all new at HTML4) have a similar purpose, with scope
being the simpler of the two; all 4 attributes are designed for cells that
provide header information (with axis also having a broader application).

HTML4 has removed the earlier distinction between th & td to a presentation
level (through stylesheets). Both are intended to be data cells, and their
attributes are thus identical. For common structure/presentation in
extremely large tables, HTML4 provides col & colgroup. For a simple
method of structure/presentation in smaller tables it provides scope and for
full control it gives th.headers.

abbr: a precis of the cell’s contents (to be shown whilst the table loads, etc.).
scope: the data cells for which this cell provides header information; one of:

• col
• colgroup
• row
• rowgroup

headers: the header cell(s) which provide header information for this cell
(inverse of scope). The value is a list of the header-cell id’s.
axis: the W3c says: “This attribute may be used to place a cell into
conceptual categories that can be considered to form axes in an n-
dimensional space” (wtf?).

To the best of my knowledge, browser designers have mostly ignored
everything written in this section, and have failed to implement any (or most)
of what HTML4 hoped for in that regard. They appear to have decided that, at
this point, the HTML4 designers had disappeared up their own axis.

colspan:

rowspan:

(default 1) It is possible to have a value of ‘0’ (zero), which is intended to
mean “all cols|rows from here to the end” - beware of the value of dir in that.
However, it was ignored by most HTML4 browsers.

Some practical advice: it is very easy, as you build bigger tables, to make
mistakes with these 2 attributes. Always test out your layout before entering
any data.

See table: the whole thing for most of the elements of table assembled
together.

HTML Primer & Reference Guide 144

Reference Guide:- HTML

thead - Table head

Syntax: <thead>...<thead>

Description: The optional thead , tfoot & tbody are intended by the HTML4 designers as
structural elements within tables, grouping common elements together. The
vision was that browsers would provide a scrolling region for the body of long
tables & fixed sections at head & foot. Instead, much as with col &
colgroup, the early HTML4 browsers decided simply to ignore them.

See also: caption, col, colgroup, tbody, table, td, tfoot, th, thead, tr

Properties:
Content model: Block

Contained in: table

Can contain: One or more tr elements

Standard: HTML 4.01 Strict

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

align (left|center|right|justify|char)
horizontal alignment of cells (deprecated)

char (default: ‘.’) char value if align=char

charoff (pixels or %) offset in cell to char if align=char

valign (top|middle|bottom|baseline) vertical alignment of cells

The HTML order must be thead,.tfoot then tbody (all are optional) (the
intention is to try to avoid rendering delays). See table: the whole thing for
most of the elements of table assembled together.

Note: the scope attribute of th and/or tr elements offers a simpler
alternative to thead, whilst missing the CSS/script opportunities.

HTML Primer & Reference Guide 145

Reference Guide:- HTML

title - Document title

Syntax: <title>...</title>

Description: title is RequiredRequired; there may only be one, composed of text and/or entities
(no HTML tags allowed).

See also: base, isindex, head, link, meta, object, script, style, title

Properties:
Content model: Other

Contained in: html

Can contain: Plain text, including entities

Standard: HTML 4.01 Strict, HTML 3.2 Final, HTML 2.0

Attributes:
i18n: - see language-attributes

Writing a good title is something of an art-form, long practised by Newspaper
& Magazine sub-editors; the main advice given here will be: “less is more”
(“multum in parvo”). Consider the following:

• tabbed browsers put it in the tab (with the full title as a tooltip)
• OSs will use it for the taskbar, dock, menu bar, etc.
• SEs will pay strong attention to it in placing the page in the SERPs, in

part according to how it matches the content that follows

The Title has become yet another place that has become keyword-stuffed as
HTML writers fall prey to the lure of SEO & chase the SERPs. That can easily
become a fools’ errand. It is humans that read web-pages (bots only scrape
them), so write for your human readers first. If they like what they read, they
will recommend your words to other readers, and your pages will rise up the
SERPs. It’s easy, really; the content& how it is presented truly should be King
and Queen in all that you do.

HTML Primer & Reference Guide 146

Reference Guide:- HTML

tr - Table row

Syntax: <tr>...<tr>

Description: tr is a table row, and groups together a common row of header (th) or data
(td) cells. tr is thus a structure & presentation element rather than a data
element but, unlike all other such table elements, is RequiredRequired.

See also: caption, col, colgroup, tbody, table, td, tfoot, th, thead, tr

Properties:
Content model: Block

Contained in: thead, tfoot, tbody

Can contain: One or more td or th elements

Standard: HTML 4.01 Strict, HTML 3.2 Final

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

align (left|center|right|justify|char)
horizontal alignment of cells (deprecated)

bgcolor (sRGB colours) background colour for row (deprecated)

char (default: ‘.’) char value if align=char

charoff (pixels or %) offset in cell to char if align=char

valign (top|middle|bottom|baseline) vertical alignment of cells

tr must sit within a thead, tfoot or tbody. There can be zero instances of
the first two and the start/end tags for tbody are optional, which means that
the simpler structure of a html3.2 table is still fully valid HTML4.0.1.

See table: the whole thing for most of the elements of table assembled
together.

HTML Primer & Reference Guide 147

Reference Guide:- HTML

tt - Teletype text

Syntax: <tt>...</tt>

Description: Not everyone reading this will know what teletype-text originally looked
like. It normally gets rendered in a browser as monospaced-text.

See also: abbr, acronym, b, big, cite, code, dfn, em, i, kbd, samp, small,
strong, tt, var

Properties:
Content model: Inline

Contained in: Block-level + inline elements

Can contain: Inline elements

Standard: HTML 4.01 Strict, HTML 3.2 Final, HTML 2.0

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

HTML Primer & Reference Guide 148

Reference Guide:- HTML

u - Underlined text

Syntax: <u>...</u>

Description: u is normally rendered in a visual browser in an underlined style.

See also: abbr, acronym, b, bdo, big, cite, code, dfn, em, i, kbd, q, samp, small,
span, strong, sub, sup, tt, var

Properties:
Content model: Inline

Contained in: Block-level + inline elements

Can contain: Inline elements

Standard: HTML 4.01 Loose (deprecated in HTML4), HTML 3.2 Final

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

HTML Primer & Reference Guide 149

Reference Guide:- HTML

ul - Unordered list

Syntax: ...

Description: ul is an unordered.list of items and, through the black magic of stylesheets,
is often used for menu items.

See also: li, ol, ul

Properties:
Content model: Block

Contained in: applet, blockquote, body, button, center, dd, del,
div, fieldset, form, iframe, ins, li, map, noframes,
noscript, object, td, th

Can contain: One or more li elements

Standard: HTML 4.01 Strict, HTML 3.2 Final, HTML 2.0

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

compact display in a compact style (deprecated)

type (disc|square|circle) style for bullet (deprecated)

compact:

compact is poorly supported by browsers.
type:

type governs the style of presentation of the bullet allotted to the contained
li elements, and thus is deprecated in HTML4.01 Strict. The value is disc|
square|circle and, in the absence of any stylesheet information, the browser
will decide according to the level of the list (li elements can be nested, which
will give rise to different levels of listing – see next page for an example in a
browser).

HTML Primer & Reference Guide 150

Reference Guide:- HTML
The whole thing:

Here is html for ul, with nested li; note that the white space in the html
should have zero effect on the results in the browser, although some browsers
in the past have had bugs in some versions causing differences in
presentation according to the presence/absence of white space. For that kind
of reason I would always advise to use the closing end-tag, even though—as
here—it is often optional:

...and what it looks like with a default stylesheet in Firefox23.0.1:

HTML Primer & Reference Guide

 Lorem ipsum dolor sit amet, consectetur adipiscing elit.
 Cras id ullamcorper velit:
 Interdum et malesuada fames ac ante ipsum primis in faucibus.
 Etiam iaculis:
 lacus ac commodo aliquam.
 eros ipsum feugiat nibh.
 egestas tincidunt elit eros ac lorem.
 venenatis posuere metus.

151

Reference Guide:- HTML

var – Variable

Syntax: <var>...</var>

Description: var is normally rendered in a visual browser in italics.

See also: abbr, acronym, b, big, cite, code, dfn, em, i, kbd, samp, small,
strong, tt, var

Properties:
Content model: Inline

Contained in: Block-level + inline elements

Can contain: Inline elements

Standard: HTML 4.01 Strict, HTML 3.2 Final, HTML 2.0

Attributes:
core: - see core-attributes

i18n: - see language-attributes

events: - see event attributes

HTML Primer & Reference Guide 152

Reference Guide:- CSS

Reference Guide:- CSS

HTML Primer & Reference Guide 153

Reference Guide:- CSS

Introduction

HTML: “HyperText Markup Language”
CSS: “Cascading Style Sheets”

HTML is a markup language for documents that may contain more than just
plain text, and CSS is a simple method for the author to attach visual (or
perhaps spoken) style to that document’s display.

Introduced together with script as placeholders in HTML 3.2 Final, style
first became an active element in HTML4 .

Visually, HTML is designed to be displayed on a canvas. That ‘canvas’ may be a
mobile, a computer VDU (‘Visual Display Unit’), a piece of paper, a
projector screen or the side of a house; CSS attempts to provide a formatting &
layout model that will give a similar result in all circumstances, yet remain
simple to understand & use. It mostly succeeds in that.

The building blocks of CSS–the various CSS Properties—are easy to understand
& apply for those that are familiar with HTML. Complexity may arrive with the
ways that those properties can interact with the HTML elements & each other
on the canvas, and perhaps also with the terminology used. The latter—the
terms used—will be familiar for anyone that has used DTP
(‘Desk-Top Publishing’) software.

The next-but-one section in this brief intro is the CSS Layout Model. It will set
out how HTML elements are laid out on the canvas, and will also intoduce all
the DTP terms that will be used in these pages. It’s simple stuff, but vital to
know if you want to get to grips with CSS. But first...

“Cascading”:
The next section is how to attach style & StyleSheets to the HTML document,
and in particular how ‘cascading’ works.

It is perfectly normal to have 3 or more sets of style acting on a document at
once; here is an example:

1. The author’s site-wide StyleSheet
2. Document-specific inline style (an embedded StyleSheet)
3. HTML element inline style

The first helps to give the same look ‘n’ feel across an entire site.
The second can give a specific look to a specific page.
The third will (say) give a specific style to a specific sentence.

Further, the first StyleSheet may import other StyleSheets (and so on), and it
is also possible for the reader to setup a personal stylesheet (perhaps they
want to increase the font-size on all docs that they read); in the end, it can get
really complicated as to which style-statement for a HTML element should
apply. The methods & resolution of all this is known collectively as the
“Cascading Mechanism”.

HTML Primer & Reference Guide 154

http://www.w3.org/TR/html4/sgml/dtd.html#head.content
http://www.w3.org/TR/REC-html32#script
http://www.w3.org/TR/REC-html32#script

Reference Guide:- CSS
Attaching Style/StyleSheets to a HTML document

Overview:
There are lots of ways to tell the browser what style you want. Things are
done like that to both provide flexibility & also to expand the author’s
options. It can mean, however, that the browser needs to decide which, from
several competing style statements, it will apply to a specific HTML element.

This section will first itemise all the many ways to attach style to a doc, list
common methods of specifying style (the stylesheet ‘syntax’) and then, at the
end, will explain the cascading order by which the browser chooses one style
statement over other, competing statements.

The W3C example above shows 4 methods of how to combine style & HTML.
Strictly, this is a HTML topic, and is also discussed in the relevant sections of
the HTML Reference.

1. Loading an external StyleSheet
2. Using an Embedded StyleSheet
3. Importing a StyleSheet (@import)
4. Inline Style – class, id or style
5. Stylesheet Syntax – Intro
6. Stylesheet Syntax

a. Comments
b. Whitespace
c. Statements
d. Grouping selectors
e. Class & ID selectors
f. Inheritance
g. Contextual Selectors

7. Cascading Order
a. !important

HTML Primer & Reference Guide

<html>
 <head>
 <title>title</title>
 <meta http-equiv="Content-Style-Type" content="text/css">
 <link rel="stylesheet" type="text/css"
 href="http://style.com/cool" title="cool">
 <link rel="alternate stylesheet" type="text/css"
 href="http://style.com/uncool" title="uncool">
 <style type="text/css"><!--
 @import url(http://style.com/basic);
 h1 { color: blue; }
 --></style>
 </head>
 <body>
 <h1>headline is blue</h1>
 <p style="color: green;">while the paragraph is green.
 </body>
</html>

155

http://www.w3.org/TR/CSS1/#containment-in-html

Reference Guide:- CSS
Loading an external StyleSheet

example:
<link rel="stylesheet" type="text/css"
 href="http://style.com/cool" title="cool">
<link rel="alternate stylesheet" type="text/css"
 href="http://style.com/uncool" title="uncool">

Definition:- a “StyleSheet” is a plain-text document full of style statements.

(examples of such ‘style statements’ are at the bottom of each CSS Property
page in this PDF; web-page stylesheets can also be viewed as plain-text in a
browser, or by using various browser extensions) (try Web Developer)

rel=stylesheet:
The HTML link element with ‘rel=stylesheet’ (must be within the head) will
cause every style statement in the ‘cool’ stylesheet to be applied to the
document. Multiple such elements can be used, with differing href values,
and the title attribute is important:-

• no title:- is the persistent StyleSheet (always applied) (one only)
• some title:- is the preferred StyleSheet (auto-applied) (one only)
• same title:- all are concatenated together into one stylesheet

rel="alternate stylesheet":
The HTML link element with ‘rel="alternate stylesheet"’ (must be within the
head) will cause every style statement in the ‘uncool’ stylesheet to be
available as an alternative stylesheet for the document. The title attribute
is required with this value. Multiple such elements can be used, with differing
href values, to offer multiple options.

(many recent browsers, when there are optional stylesheets, will offer a
method—try the menu—to switch between the styles)

This author strongly recommends that you make use of this method. Develop
a basic ‘look ‘n’ feel for your site in a single StyleSheet—most small &
medium-sized sites will need just one—then get on with adding content to
your site.

See also: (HTML) link rel=stylesheet

HTML Primer & Reference Guide 156

http://chrispederick.com/work/web-developer/

Reference Guide:- CSS
Using an Embedded StyleSheet

example:
<style type="text/css"><!--
 h1 { color: blue; }
--></style>

Definition:- an “Embedded StyleSheet” are style statements placed between
style elements.

(must be within the head) These are inline style statements that apply to the
whole document. Essentially, this is a stylesheet embedded within the
document; that ‘stylesheet’ can be as few as one style statement, or many. The
same rules as for external stylesheets apply.

HTML comments:
The example at top is shown embedded within SGML comments
(“<!-- ... -->”). These were essential to use shortly after introduction, as
pre-HTML4 browsers would ignore the unknown ‘style’ tag, yet display the
style statements as text in the document. Embedding those statements within
comment-tags prevented those browsers from doing that, but still allowed
conforming browsers to recognise the style statements. Few folks use such
ancient browsers these days, but the practice does no harm.

External stylesheets do not need to use SGML comments.

HTML Primer & Reference Guide 157

Reference Guide:- CSS
Importing a StyleSheet

example:
<style type="text/css"><!--
 @import url(http://style.com/basic);
--></style>

Definition:- an “Imported StyleSheet” is an external stylesheet added using
the ‘@import’ statement.

It must be:
1. Within a stylesheet (whether external or embedded).
2. The first statement in the stylesheet.

More than one @import statement can be used.

Style statements within the stylesheet containing the @import statement
over-ride any conflicting imported statements for the same element (the last
one wins). See the Cascading Mechanism for the full set of Cascade rules.

HTML comments:
See the page on embedded stylesheets | html comments for the reason for
their inclusion here.

What’s the point?
‘Modularity’ is the main reason for this mechanism. The idea is to try to
reduce the amount of typing, and to allow style-rules to be built in modules
that can be re-used.

HTML Primer & Reference Guide 158

Reference Guide:- CSS
Inline Style – class, id or style

examples:
<meta http-equiv="Content-Style-Type" content="text/css">
...
<p class="engineer">
<p id="grass">
<p style="color: green;">

Definition:- “Inline Style” is style applied to a HTML element via the ‘class’,
‘id’ or ‘style’ core attributes.

HTML4 introduced the ‘class’, ‘id’ & ‘style’ attributes as core attributes for
almost every HTML element (only basefont, param & script do NOT accept
them). The style associated with that attribute is then applied directly to it,
and also over-rides any other, competing style statements from other sources.

These 3 attributes effectively allow a stylesheet to be embedded inline within
the element itself (remember:- a ‘stylesheet’ can be one, single.style
statement, or many). If there are multiple style statements, then each one
needs to be separated from the others by a semi-colon (‘;’) (see ‘style’
example, top). Strictly, the last statement in a stylesheet does NOT need a
terminating ‘;’, but this author—from long, bitter experience—advises you to
always include a terminating ‘;’ for every statement, whether it needs it or
not (it does no harm).

What are the differences?
• style:

The attribute value (in the example above, ‘color: green;’) is the style
to be applied to that element. If you find yourself wanting to use 3 or more
statements, then you should probably use ‘class’, or possibly ‘id’.

Style statements within the style attribute will always apply, regardless
of other competing style (on the basis of ‘last one wins’) (see also id).

• id:
This attribute shares a namespace with the ‘name’ attribute, and is thus
guaranteed to have a unique value within the document (in the example
above, there will be one, and one only, ‘grass’ id or name (and not both)
throughout the document).

The id attribute is given the highest style specificity. It shares this
specificity with the style attribute.

• class:
This attribute is explicitly for style; learning to use it is more of an art than
a science.

The class attribute is given the next-highest style specificity (below id).
Like id, it can be applied to any html element (repetitively, unlike id).

HTML Primer & Reference Guide 159

Reference Guide:- CSS
What are the similarities?

• id, class:
Each of these attributes needs to be both declared & defined (given both a
name as an attribute + a value) within a stylesheet before use. That
stylesheet may be external, embedded or imported. Once declared +
defined, the attribute can be used as normal within a HTML tag, and the
style within the attribute value is then applied to that HTML element.

Some artificial examples:
There is every chance that you, the reader, may not yet understand all the
differences nor similarities between these 3 attributes. If so, that will most
likely be because you have not yet tried out a stylesheet on a document &
played with it. This is one of those occasions where most of the learning will
come from doing rather than reading (in addition, the stylesheet rules are in
a later section). Nevertheless, to try to help:

1. Use a stylesheet to set the style for all the HTML elements that you will use in your
document(s).

2. Use class(es) within a stylesheet for situation(s) where the style of particular sections
will differ from the default. One art to try to pickup is to give the class a name that
reflects the style that you want rather than a literal name (eg ‘engineer’ rather than
‘dark-green’, or ‘agreement_conditions’ rather than ‘really_small’) (think: you may
at some later time decide to change the font-size).

3. id is useful for sections-within-a-section where it differs again on rare occasions.
‘agreement_conditions’ is perhaps a better example as a name for id than it is for
class.

4. style is then useful for the one-off where you need to tweak the style.

default: p { background: #004400; color: #ccffcc; }
class: p.engineer { background: #ccffcc; color: #white; }
id: p#grass { background: green; color: black; }

the html: <p>
Some words to show you the default, shifting to <span
class="engineer">the Engineer Class to illustrate that, and
finishing with the defaults.
</p>
<p class="engineer">
But, of course, then you want to give the Class it’s full reign and
let it strut it’s stuff in a full paragraph.
</p>
<p class="engineer" id="grass">
Now you mix it up a bit, and discover that the id will always
win in an arm-wrestling match with the Class.
</p>
<p style="background: white; color: black;" id="grass">
But what happens now? (remember that this style was defined <span
style="font-style: italic;">after id.)
</p>

The result:
Some words to show you the default, shifting to the Engineer Class to
illustrate that, and finishing with the defaults.
But, of course, then you want to give the Class it’s full reign and let it strut it’s
stuff in a full paragraph.
Now you mix it up a bit, and discover that the id will always win in an arm-
wrestling match with the Class.
But what happens now? (remember that this style was defined after id.)

HTML Primer & Reference Guide 160

Reference Guide:- CSS
Stylesheet Syntax - Intro

example:
p color: green;

Definition 1:- “Syntax” is the set of words & punctuation that a browser can
recognise as valid CSS – the rules of the game.

Definition 2:- “Computer” is a very fast idiot.

Do NOT: quote neither properties nor keywords.
(in the example above, ‘color’ is a property & ‘green’ is a keyword, representing the value
for ‘color’, and in this sentence I’ve quoted both of them, which is exactly what you should
NOT do in your stylesheets!)

Hint: write & save your stylesheets—just like your HTML documents—in UTF-8,
(there is more on this below) with no BOM (“Byte-Order Mark”). If you decide
to use a different charset (DON’T!), make sure that the same charset is used for
both documents & stylesheets.

Stylesheets will accept a very limited set of characters. UTF-8 contains approx
32,000 characters; stylesheets will allow you to use less than 127 of those
(and only from the US-ASCII charset) (technically, CDATA with extra limits):

• A ⇒ Z
• a ⇒ z
• 0 ⇒ 9
• hyphens (‘-’)
• underscores (‘_’)

• periods (‘.’)
• colons (‘:’)
• semi-colons (‘;’)
• curly brackets (‘{‘ + ‘}’)
• hash marks (‘#’)
• exclamation marks (‘!’)
• slash-dot, dot-slash C-Style comments (‘/* ... */’)
• single-quotes (‘'’)
• double-quotes (‘"’)

• whitespace is ignored
(tabs: 0x09; newlines: 0x0a; form-feeds: 0x0c; carriage-return: 0x0d; space: 0x20)

errata: The above is untrue. I’m deliberately lying to you; but for a good reason!

The above is true for HTML4.01 (plus id & class must begin with a letter,
no spaces allowed). HTML5 has completely changed the rules of the game,
which is a little dangerous: now, id & class must contain at least one letter,
and spaces are still not allowed. Apart from that, you can use whatever
characters that you like (including all punctuation if you want!).

HTML Primer & Reference Guide 161

http://www.w3.org/html/wg/drafts/html/CR/dom.html#the-id-attribute
http://www.w3.org/TR/REC-html40/types.html#type-cdata

Reference Guide:- CSS
My advice?: start with HTML4 until you are comfortable with it. HTML5 is not
finalised & keeps changing as I type this. If you take the advice given so far,
then you can begin to add HTML5 elements as you like with zero changes (all
of HTML 4.01 Strict is also part of HTML5). In any case, the tighter rules for
HTML4 will help you as you learn to give meaningful names for class and id.

Learn to use the HTML elements with the purpose for which they were
designed. Some elements are block, whilst others are inline, and there is a
reason for that. CSS allows you to make any element either block or inline at
will. That is ever so useful if you have a specific instance where you need to
change it’s character, but you should also ask whether perhaps you are using
the wrong element.

Finally:- have fun! If it is hard work, but you are enjoying yourself, that is
about right.

charset: This pdf suggests that you use UTF-8 as the encoding for your HTML
documents and also for the CSS files. The Primer lessons also explain the steps
that you need to take to make sure that your browser can recognise those
documents correctly. That will allow you to use any language within your
document & CSS, if your text-editor is also configured correctly to use UTF-8.
Some of all that can be fiddly to get right, but none of it is difficult.

The next section will itemise all of the StyleSheet syntax, then give the cascading order.

HTML Primer & Reference Guide 162

Reference Guide:- CSS
Stylesheet Syntax

A stylesheet is a plain-text file full of statements that link style to HTML
elements. This section will set out the syntax & grammar of stylesheets, with
examples. Here are two useful links to help you validate your HTML docs &
your CSS, and another for the formal specification:

• W3C CSS Validator
• W3C HTML Validator
• CSS1 Grammar

Comments:
/* ...
 * ...
 */
In addition to style statements you can also have style comments within your
stylesheets. These are C-style comments, and can be single- or multi-line.
They begin with a slash-dot (‘/*’) and finish at a dot-slash (‘*/’). They can
NOT be nested. When the browser parses (browser-speak for ‘reads’) a
stylesheet & finds a matching slash-dot & dot-slash, it will remove them plus
everything between them & replace it all with a single space.

Comments are useful for others that want to understand your stylesheet.
They are also mighty useful for you if you later decide to edit the stylesheet.

Hint: learn to write useful comments.

Whitespace:
Whitespace is ignored, so you can place as many spaces, tabs and/or blank-
lines in the stylesheet as you like.

Statements:
<selector> { <declaration> }
p { color: blue; }

This is a simple example of a style statement (and, all by itself, is sufficient to
be a stylesheet); ‘p’ is the example of a “selector”, whilst ‘color: blue’ is
the example of a “declaration”, which in this example would be the style that
would be attached to all paragraph elements within that web-page. So:-

• selector == HTML element

The declaration above is itself a combination of style property (‘color’) and
value (‘blue’) and, in this case, only sets a single property. Many properties
may be set at the same time (“grouped”); each property/value pair should be
separated by a semi-colon (‘;’). Here is an example:

p {
 color: blue;
 background: white;
}

HTML Primer & Reference Guide 163

http://www.w3.org/TR/CSS1/#appendix-b
http://www.w3.org/TR/CSS1/#appendix-b
http://validator.w3.org/
http://validator.w3.org/
http://validator.w3.org/
http://jigsaw.w3.org/css-validator/
http://jigsaw.w3.org/css-validator/
http://jigsaw.w3.org/css-validator/

Reference Guide:- CSS
Grouping selectors:

h1, h2, h3 { color: blue; }

Grouping the selectors saves typing. It is also possible to group both selectors
& declarations at the same time:

h1, h2, h3 {
 color: blue;
 background: white;
}

Class & ID selectors:
code.html { color: blue; }
code#css { color: red; }

A class is set with a dot (‘.’), whilst an id is set with a hash (‘#’). Above they
are associated closely with the code element (the declarations could also be
grouped), but they can also be declared independently of the element (and
then also with grouped declarations if you wish):

.html { color: blue; }
#css { color: red; }

This ‘bare’ declaration is perhaps more useful for Classes than for IDs: a class
can be used in the html doc as often as you wish; the id can be used just once.

Hint: learn to give class/id names that are meaningful, and also that describe
their function rather than their appearance. That will help you both
remember what the name is as you use them, and also what it is supposed to
do. Imagine if you call it a “greeney” class, then later decide that it looks
better as ‘brown’, when what you wanted was a “grounded” class of style.

Inheritance:
We are now getting close to setting out the ‘cascading order’ of stylesheets
but first, consider inheritance:

Each one of the CSS Properties sets out whether it is inherited, or not. The
browser constructs an object tree from your HTML (called a ‘DOM’: “Document
Object Model”) which starts with the html object itself as the top-level
member; next is ‘body’, then so on, depending on how each is declared in
your document. The language used is of ‘parent’ & ‘child’, so the ‘body’ object
is a child of the top-level HTML object (and so on throughout the branches of
the tree).

Most of the CSS Properties are inherited from parent to child (but some are
not). An obvious example is font, which will be inherited—if set on body—as
the default for all text throughout the object tree, and thus for all text in your
webpage. Imagine then if you have a paragraph element & change the font in
it. That paragraph will initially inherit a value for font from it’s parent, but
your style declaration will change that. However, any children declared in the
paragraph—perhaps an em (‘emphasised’ text) element—will inherit the new

HTML Primer & Reference Guide 164

Reference Guide:- CSS
value for font & not the old.

Contextual Selectors:
p em { background: yellow; }

The final syntax to consider with CSS1 are a type of selector that are higher in
the cascading order than simple selectors. In the example above, setting em
(‘emphasis’) on a word in a p (‘paragraph’) would change the background to
yellow (whilst the default was white), yet would have zero impact on
emphasised words within any other element. You can make the list of nested
selectors as large as you like (remember: the order is important).

Cascading order:
It is the browser’s job to decide which, out of (possibly) a multitude of
different style statements, from (possibly) multiple stylesheets, will be chosen
as the one(s) to apply to a specific HTML element at any point within that
document. The browser is therefore given a set of rules to go through to
decide which ones to choose. First, however, there is one, last, little wrinkle in
the syntax which CSS offers to the writer to shift their favourite statement one
notch higher up the preference order:

!important:
p { color: blue ! important; }

In general, the rule is “last one wins”. As an example, it was mentioned in
earlier sections that one or many ‘@import’ statements can be placed at the
very top of the stylesheet, to import other stylesheets into the current
stylesheet. Imagine that both the current and the imported stylesheet both
contain color statements for p. Which one will apply? The answer is the
current stylesheet, and the reason is that the current stylesheet statements
are made later than the imported stylesheet, and—if everything else is equal
—the “last one wins”.

Now, consider the reader’s stylesheets (because the person using the browser
can have their own, personal stylesheets). The general import order is:

1. Browser defaults
2. Reader’s stylesheets
3. Author stylesheets

...so if the reader wants all paragraph text in a blue font, but the author wants
red text, the author’s choice will prevail as it was the last. However, if the
reader uses the syntax of “!important” as at top, then the reader’s choice will
prevail... unless the author is naughty, and also uses “!important” for their
red text, because then the weights will be identical and, in that situation, as
always, “last one wins”.

So, the cascading order is next. In this, remember: the criteria is “weight”.
Which style statement carries the greatest weight? Which is the 500lb gorilla
in the room? This is how it is decided:

HTML Primer & Reference Guide 165

Reference Guide:- CSS
Cascading Order

Style properties are applied to HTML elements and, by design, there may be a
large number of—and possibly conflicting—such properties for each element.
The browser runs through a set of rules to discover which style statement has
the greatest weight for a particular element at the place that it occurs within
that html document. This is the algorithm used:

Note: the ‘sorting’ below continues only whilst the browser has more than
one rule with equal weight. As soon as it finds itself with just one rule at the
top of the order, that one is chosen, and the sorting stops.

1. Find a stylesheet selector that matches the html element
(go to next if one or more matches)
a) If none apply, use the inherited value, or
b) If no inherited value (eg html itself, or non-inherited properties)

use the initial value (and we are done)
2. Sort by weight (‘!important’ raises the weight)

a) author rules are chosen if equal weight
3. Sort by origin (most to least):

a) Author’s stylesheets
b) Reader’s stylesheets
c) Browser defaults

4. Sort by specificity of selector (most to least):
a) ID attributes in the selector
b) Class attributes in the selector
c) Contextual Selectors (how many tags)

This one is complicated, so here is an example:
li {...} /* a=0 b=0 c=1 -> specificity = 1 */
ul li {...} /* a=0 b=0 c=2 -> specificity = 2 */
ul ol li {...} /* a=0 b=0 c=3 -> specificity = 3 */
li.red {...} /* a=0 b=1 c=1 -> specificity = 11 */
ul ol li.red {...} /* a=0 b=1 c=3 -> specificity = 13 */
#x34y {...} /* a=1 b=0 c=0 -> specificity = 100 */

Pseudo-elements count as normal elements
Pseudo-classes count as normal classes

5. Sort by order specified.
a) the last one specified is the one chosen.

Phew!

Next is the final section in this introduction: the CSS Layout Model.

HTML Primer & Reference Guide 166

Reference Guide:- CSS
CSS Layout Model

This is one of those vital CSS subjects. Here are the sections:

1. Overview
2. Block-Level Elements

a. Collapsing Vertical Margins
b. Horizontal formatting
c. How the Browser Handles ‘width: auto’
d. The Rules, or: “Who Messed with my CSS?”!
e. List-Item Elements
f. Floating (Block-Level) Elements

3. Inline Elements
a. The Baseline
b. How the line-box is formatted
c. Leading
d. Pt, Points
e. em
f. Kerning
g. Justification
h. Inline-Element Formatting

i. Whitespace
ii. br
iii. Replaced Elements
iv. Effects of Padding, Border and/or Margin
v. Effects of vertical-align

HTML Primer & Reference Guide 167

Reference Guide:- CSS
A Brief Note Before:

The organisational structure & governance of the Internet, including those
bodies that control the protocols that allow the whole thing to work & those
that police what everybody does with it is completely fascinating, because...
well... because there arn’t any & nobody does.

The W3C (“World Wide Web Consortium”) is a good case in point. It was
established by Sir Tim Berners-Lee in October 1994; he was the Brit that, in
1989, put together the (already existing) ideas of Hypertext, TCP/IP, DNS
and (what was later called) the Internet. Crucially, he designed the HTTP
protocol, wrote the first web-server and browser software, then gave this
trillion-dollar package away to the world for nothing (“this is for everyone”).
He was instrumental in creating the world’s first website (at CERN, based in
both Switzerland & France). This is what the W3C say about themselves:

“The World Wide Web Consortium (W3C) is an international community
that develops open standards to ensure the long-term growth of the Web.

The W3C acts as the central clearing-house for all efforts to develop HTML &
CSS. Yet, they cannot force anyone to accept their proposals; in particular, the
browser providers have to translate such proposals into actual working
products, and their history is of, initially at least, eagerly accepting parts of
some of the proposals & blithely ignoring others.

There is another, somewhat controversial aspect. In my view the W3C has
made some very dumb decisions; I will pick out two in particular:

1. The CSS Box Model places the HTML element at the heart of the model,
and it is not possible to directly specify the width nor height of the
enclosing box. I have zero problems with the first part, but the second
struck me as nuts when I first met it. Microsoft tried, using the
dominance of MSIE at that time, to enforce a non-conforming fix with
Internet Explorer 5 on the PC, but no-one else would accept that,
and now we are all stuck with the original W3C proposal.

2. CSS Line-Box formatting is most ignorant, and makes it almost
impossible to mix differing fonts on the page and obtain a professional
result (in brief, CSS has abandoned the font baseline as the common
feature for all font-display).

All the above, together with the browser wars & other features, has probably
made the web-designer’s work much more difficult than it needed to be. But
then, nobody has ever tried to do this before, and on a world-wide basis. It is
brand new, and the road for brand-new efforts is often rocky.

Well, it all makes for an interesting life and, as the ancient Chinese insult
goes, “may you live in interesting times”.

HTML Primer & Reference Guide 168

http://www.glish.com/css/hacks.asp
http://www.w3.org/

Reference Guide:- CSS
Overview: An HTML element is much bigger than you think.

Warning!: This starts nice & simple, and steadily gets more complicated.

The job of the browser is to layout your precious html document on to a
canvas, so that others can read (or listen) to it, and that whole process is
called “formatting” (also: “rendering”) the document. The formatting model
that the W3C has chosen is a box, with the content at it’s heart; specifically,
the HTML element is the content, and that content sits within a box:

So:
1. html element:

Strictly, ‘height’ & ‘width’ are almost never applied to an element
(shown as yellow above) (see ‘box’ below); it fills the space left by the...

2. padding:
This is padding inside the box, and surrounds the element. Padding has
no colour. Put another way, it’s colour is that of the HTML element(s) that
lay underneath it, which will be their background color (shown as
blue above).

3. box:
(shown as green above) It has a ‘border’ (thickness), ‘width’, ‘height’ &
many other properties.

!! watch out !!: the ‘width’ & ‘height’ properties for the box are actually
the width & height of the content of the box, and not of the box itself. If
you want to know the height of the box, then you will need to add together
the height of the contained element(s) + both sets of vertical padding +
both sets of vertical border (and similar for the width).

4. margin:
The is the margin outside the box, and gives a visual separation from
adjacent boxes. Margin has no colour. Put another way, it’s colour will be
that of it’s parent HTML element, which will be it’s parent’s
background color (shown as pink above).

HTML Primer & Reference Guide

margin

padding

html element
padding

margin

169

http://www.w3.org/TR/CSS1/#formatting-model

Reference Guide:- CSS
next: In HTML there are 3 types of element:

1. Block-Level
Remember: a block-level HTML element has an intrinsic display
value of ‘block’ or ‘list-item’ (as applicable)

In CSS, the following are block-level:
◦ ‘display: block’
◦ ‘display: list-item’
◦ any value for float other than ‘none’

Key feature: a block-level element opens on a new line
2. Inline

Remember: an inline HTML element has an intrinsic display value of
‘inline’ (mostly, this is text)

In CSS, the following are inline:
◦ ‘display: inline’
◦ ‘float: none’

Key feature: an inline element opens at the next display position
within the display flow

3. Other
Remember: ‘other’ HTML elements have an intrinsic display value of
‘none’ (most of these must appear within the head)

In CSS, the following are ‘other’:
◦ ‘display: none’

Key feature: an ‘other’ element is not displayed on the canvas within
the ordinary flow of HTML elements; at all; ever

Block-Level Elements:
There is a problem with a display based on boxes. You see, it can make the
final page look a bit... well, boxy. I’ll try to demonstrate that using text (which
is inline rather than block-level, but no matter). Look at these 2 lines of text:

This is some text using a fixed-width font (Courier)
This is some text using a proportional (‘typeset’) font (Georgia)

Most folks will decide that the ‘typeset’ font is both more attractive and also,
curiously, easier to read, even though there are far more letters on the line.

In both fonts, every letter occupies a little box. With the mono-spaced Courier
font, every box is the same size, and no letter will ever touch nor overlap any
other. With the proportional font Georgia, the vertical height of each box is
identical to those in Courier, but the horizontal width is varied according to
the content (hence the name ‘proportional’). But there is more!

HTML Primer & Reference Guide 170

Reference Guide:- CSS
The human eye & brain together are fantastically good at picking out
patterns, plus we have an innate quality-control mechanism that says “I like
that pattern better than those other patterns”. The interesting feature in this
is that we pay more attention to those patterns that we like than those that we
do not. So, early computers started with fixed-width fonts like Courier, but as
soon as computers like the Macintosh brought out typeset displays...
...everybody went “I like those better”!

The bottom line is: you do not want your web pages to look too boxy.
Browsers try to cope with this by “collapsing vertical margins”;
unfortunately, the treatment of horizontal margins is even more complicated.

Collapsing Vertical Margins:

 1st element of list
 2nd element of list

This is far easier to show than to explain...

The above is an attempt to demonstrate how a browser would lay out the
boxes for the html shown above them (both the ul & the li elements have
been given padding + margin in the CSS; the ul has a pink background whilst
the li has a blue background; the ul padding is not marked, but surrounds
the li margins outside the pink box that you can see).

You can see the “collapsed vertical margins” in the middle. If not collapsed,
the gap between the two list elements would be twice what it currently is; that
would look wrong. So, the browser looks at list1 bottom-margin, and at list2
top-margin, and chooses whichever is biggest for the gap; that looks much
better.

PS: ul == ‘unordered list’ & li == ‘list item’ (lines of words with bullet points)

HTML Primer & Reference Guide

1st li margin

1st li padding

1st element of list
1st li padding

(collapsed li margins)

2nd li padding

2nd element of list
2nd li padding

2nd li margin

171

Reference Guide:- CSS
Here are the precise words that define ‘collapsing vertical margins’:

“The width of the margin on non-floating block-level elements specifies the
minimum distance to the edges of surrounding boxes. Two or more
adjoining vertical margins (i.e., with no border, padding or content
between them) are collapsed to use the maximum of the margin values”

CSS life becomes even more interesting when one of the elements has a
negative margin (it gets deducted from the positive one). If both are negative,
then “the absolute maximum of the negative adjoining margins is deducted
from zero”.

Horizontal formatting:
Horizontal margins are not collapsed.

remember 1: the width of a box is actually the width of the contents
remember 2: the default value for width is ‘auto’
remember 3: the sum of the 7 below == the width of the parent element

You need 7 CSS properties to discover the full, formatted width of a
non-floating, block-level HTML element:

1. margin (left & right)
(can be set to ‘auto’)

2. border (left & right)
3. padding (left & right)
4. width

(can be set to ‘auto’)
(the browser is also allowed to change it to ‘auto’ if it wants)

remember 4: a ‘replaced element’ is an HTML element such as img, where the
size of the element is not known until the browser acquires it & only then
discovers what it’s intrinsic size is.

How the Browser Handles ‘width: auto’:
• replaced element:

The width is replaced by the element’s intrinsic width
• all other elements:

Width calculated using the 7-Property sum as above

remember 5: ‘width’ has a non-negative, browser-defined, minimum value.
This value can vary from element-to-element, and can even depend upon the
value of other properties.

If ‘width’ goes below the minimum limit, because either:
• the author set too low a figure, or
• the author set it to ‘auto’ + the rules (below) would make it go below

the minimum, then...

...the value for ‘width’ is replaced by the browser with it’s minimum value.

HTML Primer & Reference Guide 172

http://www.w3.org/TR/CSS1/#vertical-formatting

Reference Guide:- CSS
The Rules, or, “Who Messed with my CSS?”!

• If none of the 7 properties are ‘auto’, then ‘margin-right: auto’ is
assigned

• If just one of ‘margin’ (left or right) or ‘width’ is ‘auto’, then that property
is changed to a value which allows the browser to satisy the 7-Property
calculation.

• If ‘width’ is ‘auto’ and either/both of ‘margin’ (left or right) are also ‘auto’,
then both margins are set to zero, and width is changed to satisy the
7-Property calculation.

• Otherwise, if both margins are ‘auto’, they are set to equal values (which
centres the element inside it’s parent).

(Inline/Floating Elements)
Any of the 7 properties set to ‘auto’ with such an element is treated as if the
value were actually zero.

Phew! Well, I did warn you.

List-Item Elements
These are also formatted as block-level elements, with the added extra that
they are preceded by a list-item marker. Perhaps the main item to note with
these elements is that the directionality of the text decides as to whether the
marker is placed on the left (ltr languages) or the right (rtl languages) (see
bdo for extra on this).

Floating (Block-Level) Elements
Using the ‘float’ property with any value other than ‘none’, any HTML
element can be declared to be outside the normal flow of elements, and is
then formatted as a block-level element. This is commonly done with images
(‘img’), so let’s consider one of those to see what happens in the formatting:

img { float: left; }
body, p, img { margin: 1em; }

Did you notice the “collapsed vertical margins” at the top (but not with the
img) (and also how margins are not collapsed horizontally)?

HTML Primer & Reference Guide

max(body margin, p margin)

b
o
d
y

m
a
r
g
i
n

p

m
a
r
g
i
n

Now there is lots of text, just
to show how it wraps on the
right-hand side of the image,
within the ‘p’ element, and
helping to ‘see’ the image
margin at the same time.

The image has moved to the left until it meets
it’s parent (the ‘p’ element), honouring it’s
parent’s margin, border & padding.

img

173

Reference Guide:- CSS
There are 2 situations in which floating, block-level elements can overlap
with the margin, border and padding areas of other elements:

1. when the floating element has a negative margin
Negative margins on floating elements are honoured, just as they are
on other block-level elements

2. when the floating element is wider or higher than it’s parent element

As always, far easier to show than to explain. Nevertheless, we have 2 sides to
our brains, so here are the rules (and, as always, remember that when you see
the word ‘inner’, we have a content-centric view, so ‘inner’ means inside the
element margin, border and padding, whereas ‘outer’ means outside all those
three):

A floating, block-level element is positioned subject to the following rules:
1. The left outer edge of a left-floating element may not be to the left of

the left inner edge of its parent element (analogously for right-floating
elements)

2. The left outer edge of a left floating element must be to the right of the
right outer edge of every earlier (in the HTML source) left-floating
element or, the top of the former must be lower than the bottom of the
latter (analogously for right-floating elements)

3. The right outer edge of a left-floating element may not be to the right
of the left outer edge of any right-floating element that is to the right of
it (analogously for right-floating elements)

4. A floating element’s top may not be higher than the inner top of its
parent

5. A floating element’s top may not be higher than the top of any earlier
floating or block-level element

6. A floating element’s top may not be higher than the top of any line-box
with content that precedes the floating element in the HTML source

7. A floating element must be placed as high as possible
8. A left-floating element must be put as far to the left as possible (right-

floating element as far to the right as possible). A higher position is
preferred over one that is further to the left (right)

And once again: phew!

HTML Primer & Reference Guide 174

Reference Guide:- CSS
Inline Elements:

The W3C spends an awful lot of space in talking about block-level element CSS

formatting, and relatively very little on inline-elements. This PDF will try to
explain the latter a little more thoroughly.

W3C definition: Elements that are not formatted as block-level elements are
inline elements.

Most of the HTML elements in all the web-documents on the Internet are
inline elements. That becomes obvious, just as soon as you realise that the
commonest inline element is text (words). In fact, each & every letter in a
word is essentially an inline element (unless it has had it’s display property
changed to ‘block’). It is simply that, within the HTML elements, whilst you will
find many elements that affect the appearance of text, and also many
elements that can contain text, there is not a single element that is text.
Nevertheless, as inline element formatting is entirely based on the
established principles of text-formatting (derived from DTP (‘Desk-Top
Publishing’), which itself was derived from magazine & newspaper
typography, which themselves drew upon principles established by the
earliest printers, going back thousands of years and cast (literally) in die by
the earliest mechanical printing presses of Gutenberg & others in the 14th
Century), it seems to me that anyone who wants to attempt to use CSS within
HTML documents should have a chance to understand the basic principles,
and the terms used, and what they mean. So, let’s start with a brief intro:

Above is some centred 72-point Georgia text, set single-space with default-
leading, and with 0.5pt hairlines placed above & below each paragraph-line
so that you can see the line-height. The first 2 letters (‘nM’) have a solid
underline plus a dotted overline, whilst the last 2 letters on that line (‘Mn’)
are shown as outline characters (which lets you see their mathematical
shapes, because this font is drawn in curves rather than bit-mapped). The
character in the middle is an ‘upright bar’ (0x7c), which goes from just above
the bottom descender to just below the top ascender.

The second line shows some lower-case letters plus punctuation. Notice how
the letters with descenders (‘y’ & ‘p’) go all the way to the bottom, and that
the ‘f’ actually overhangs the left-most part of the ‘y’ (called ‘pair kerning’)
and rises above the capital ‘M’. Finally, the ‘st’ are in superscript text.

HTML Primer & Reference Guide

nM|Mn
(‘stMfypx

175

http://www.w3.org/TR/CSS1/#inline-elements

Reference Guide:- CSS
The Baseline

Now that you have been introduced to each other, let’s start to define some
important names & ideas. The first is the notion of a “Baseline”, and we will
immediately find ourselves mired in controversy as someone, somewhere,
has made a dumb decision which, once again, we all have to live with.

Here is the identical box & text as before, but with a Baseline (orange dashes)
added for both lines of text (plus an orange vertical arrow, showing the
typographic measure of line-height—which is upwards, from baseline-to-
baseline—and also a blue vertical arrow—72 points high, stretching from just
below the bottom of the lowest descender to just above the tallest ascender—
to help you visualise what a font-height actually means).

So, the Baseline is the imaginary, horizontal line that most characters
(certainly in Latin text) sit upon. So, where is the controversy?

Professional DTP, just like the publishing industry, bases it’s text layout upon
the Baseline. CSS bases it’s text layout upon the “line-box”, which is essentially
the text line-height with the text itself embedded centrally within it
(more later). That latter is most foolish; the baseline is the consistent feature
within all fonts, and basing layout upon the baseline allows different fonts &
families & sizes to be placed within the same line of text, yet look OK (which
is why printers did that). On the other hand, the CSS designer’s choice allows
you to easily make a mixed-font page look like a dog’s dinner.

It is easy to understand: some of the things that make different font families
look different is the ratio of the height of lowercase letters to uppercase
letters (eg ‘n’ compared to ‘M’), plus how far down the descenders go (‘yp’), or
how far up the ascenders go (‘f’), and so on. It all changes the ratio of the
distances from baseline to font bottom, and so on, and can be dramatically
different between different fonts. To simply slap the font centrally within the
line-height—a most ignorant decision—means that the baselines may not
match up between different fonts, which then just looks wrong.

We need to look at CSS line-box formatting next, then will return to these text terms.

HTML Primer & Reference Guide

nM|Mn
(‘stMfypx

176

Reference Guide:- CSS
How the line-box is formatted

The notion of a “line-box” is based on the way that the browser will embed
text within the centre of the line-height allocated to that text.

The W3C states: “All elements have a ‘line-height’ property that, in principle,
gives the total height of a line of text. Space is added above and below the
text of the line to arrive at that line height ... After formatting, each line will
form a rectangular line-box”.

In order to show you this visually I’ve had to resort to a little print trickery, so
this is a simulation rather than an exact show. The box above is identical to
the previous one, except that the lower line of characters have been removed
& replaced with the identical characters from the top line. Then (using the
trickery) I’ve raised all the text in the lower paragraph so that it sits in the
middle, between the 2 hairlines (if you concentrate upon the upright bar,
which is almost the same height as the font, that becomes clearer). In the
end, the top line (pink background) shows you how the print industry does it,
and the bottom line (white background) shows you how HTML + CSS does it.

Now, in order to explain this better we need to introduce another important
term from the print industry:

Leading
“Leading” is the space between the lines of text and, for hundreds of years,
was just that:- a thin strip of lead placed between the blocks that held the
lines of text, with the whole thing—paragraphs of text + lead separators—held
together with wooden (later metal) vices.

Earlier, it was said that the text in all those pink boxes is ‘72pt Georgia’ (the
words in these paragraphs are 12pt Georgia). More accurately, the text is
‘72/84pt Georgia’; the ‘72 point’ is the font-size, whilst the ‘84 point’ is the
line-height. ‘Leading’ is the difference between the two, so the (virtual)
lead placed between each line of 72pt Georgia text is 12 points thick. Notice
that in print the lead is placed above each line of text, but in HTML + CSS half
(6 points) is placed above & half is placed below. Also, via the trickery of
computers, in HTML the lead can be negative (good trick), allowing the text to
either be very close (imagine it is ALL CAPITALS) or even overlap.

HTML Primer & Reference Guide

nM|Mn
nM|Mn

177

Reference Guide:- CSS
Pt, Points

“Point” is the standard (and smallest) measure for fonts in the print industry.
These days, it is defined as:

72 points == 72pt
== 1 inch
== 2.54cm

em
“em” is the same as the current font-size. So, our 72-point Georgia font
has an em-width of 72pt (it originally is supposed to come from the width of
the letter “M” in a font, although that letter is actually very rarely fully as wide
as the font-size).

Kerning
“Kerning” got a brief mention with the first pink box, where it was pointed
out that, in the 2 letters “fy”, the top of the ‘f’ extended over the top of the
left-part of the ‘y’. The text in the pink boxes has “pair kerning” turned on (as
does all this text), and it is kerning that allows that to happen. CSS1 does not
have any properties for kerning (though CSS3 does, so let’s look at it).

Every computer font that is not monospaced has pair-kerning tables as part
of the font (each font contains far more than just the characters). These tables
apply to pairs of characters; one of the most extreme examples is “AV” (look
how much those two characters overlap!) and, if you think about it just a
little, it is obvious that some character-pairs are likely to be able to be kerned,
whilst others never will be (how about “OO”?). The information within the
tables is unique to each font, and placed there by the font designer.

Why kern? The most obvious answer is that it allows more characters on the
line, but another is that it reads easier when kerned and also, somehow, looks
more professional.

Here is the W3C definition from CSS 3: “Kerning is the contextual
adjustment of inter-glyph spacing”.

Justification
“Justification” has some connections with kerning but is actually different
(both involve changing the ‘normal’ horizontal placing of a text character
within the line-box). Kerning involves reducing ‘normal’ inter-character
spacing, whilst justification involves changing ‘normal’ inter-word spacing
(although in print it may sometimes also involve the characters inside a word,
particularly in narrow columns when there is just one word on the line, when
t h a t
word can be set to be expanded to fit the width). Note that the last line in a
justified paragraph is not normally justified.

Now we can look at inline-element formatting on the canvas:

HTML Primer & Reference Guide 178

http://www.w3.org/TR/css3-fonts/#font-kerning-prop
http://www.w3.org/TR/css3-fonts/#font-kerning-prop
http://www.w3.org/TR/css3-fonts/#font-kerning-prop
http://www.w3.org/TR/css3-fonts/#font-kerning-prop
http://www.w3.org/TR/css3-fonts/#font-kerning-prop

Reference Guide:- CSS
Inline-Element Formatting:

Key feature 1: CSS Properties are not applied directly to text, but instead are
applied to HTML elements that can contain text.
Key feature 2: all of the main Properties that affect text (colour, font & text)
are inherited, with the sole exception of text-decoration & vertical-align.
Key feature 3: different browsers can have different defaults for text (and
also for the Box Properties); those defaults can also vary by OS
(“Operating System”).

The above means that you are strongly advised to place a whole set of
CSS Properties upon body within your base stylesheet. body is the first HTML
element within the HTML object tree that displays upon the canvas, and it is
guaranteed to always be present (even if it does not appear within the HTML
markup). Doing that will both ensure that your whole site has a similar look
‘n’ feel, and also that it keeps that look ‘n’ feel no matter what browser nor OS
your readers use. That will help to give a professional style to what you write,
and that will help to give your readers the confidence that you know what you
are doing (and therefore saying).

Inline-elements form part of the flow of HTML elements within a document.
Any element with a display property of ‘block’ or ‘list-item’ (which includes
floating elements) is removed from that flow & placed independantly upon
the canvas, according to rules given previously within the Block-Level
Elements section. For the rest, they are formatted within a line-box, and that
line-box flows across the display space and around any block-level elements.
The nature of that latter flow is decided by the values of float & clear for
the block-level element(s) (see also Floating Elements).

whitespace:
Having created the line-box of inline-elements, the browser will render it
upon the canvas. That will normally create many lines of text (just like these
paragraphs; it is called text ‘wrapping’), meaning that the line-box is split
into many smaller boxes, each of which are stacked on top of each other, with
zero regard for any internal margin, border or padding. The position of those
breaks—and whether there are any— is decided by the white-space
property, since the line-box is wrapped between words, and ‘whitespace’ is
defined as those characters that can not appear within words.

br:
All of the words in the previous paragraph are now thrown into disarray by
the br (“line break”) element, which forces the flow to be wrapped upon a
fresh line at the point where it appears. Somehow, br got overlooked by CSS,
and none of the CSS1 properties nor values can describe it’s behaviour. The
W3C says “CSS1-based formatters must treat ‘BR’ specially”.

So far, we have spoken about the line-box as if all that it contains is text. Not only that:
there has been an inherent assumption that all the text will be the same font, size &
line-height throughout, and that is rarely the case, since mixing up the fonts & sizes in a
structured manner can greatly improve the readability of your text. Further, there are
non-text inline-elements to take into account. The final sub-sections within this section
will try to take all of these variations into account.

HTML Primer & Reference Guide 179

Reference Guide:- CSS
Replaced Elements:

Replaced elements can be either Block-Level or inline; we are only interested
in inline elements within this section, so that essentially reduces it to either
img or object elements. In practice, you are almost certain to set either of
these elements (or any other inline replaced elements) to become floating
elements, which then means that they then fall under the block-level element
rules. Nevertheless, let’s maintain the fiction that they are non-floating, inline
replaced elements simply so that you can understand what the heck they are,
and how they are formatted within the line-box (which will also assist with
understanding what happens within the other sub-sections lower down).

Definition: A replaced element is an element which is replaced by content
pointed to from the element.

Let’s imagine that, for some crazy reason, you are going to place a 300x300px
(pixel) image within your 12px line-height text...

Now, recall from the section on how the line-box is formatted that the text
itself is placed character-by-character in the centre of the allotted
line-height, and that any shortfall between font-height & line-height is
filled with space evenly at top & bottom. So, your 10px text—in the color of
the containing element-- is formatted at plumb centre and 1px leading—in
the background-color of the containing element—is added at top &
bottom. When the browser reaches the image within the HTML flow, it knows
where it starts (the next character position within the text-flow), but it cannot
know how wide or tall it is unless you tell it.

Hint: always state the (formatted) dimensions for replaced elements within
the html, else the browser may have to re-format the entire document below
the element once it gets it, which is most unprofessional.

If the html tells the browser what the formatted dimension should be it can
continue formatting the line-box. However, it still cannot place the formatted
image in the allotted space until it gets it, and that may take many seconds. In
addition, it does not know the intrinsic size of the image until it arrives (it
could be a thumbnail, or the size of a bus, or anything inbetween).

This is how the browser handles the image width setting (and similar for
height):

• width: auto
The intrinsic width is used as the width of the element

• (any other value)
The value is used and the replaced element is resized accordingly

The final item to consider for both width & height considerations is any
replaced-element margin, border or padding properties, which will be added
to width & height (that only happens with replaced elements and NOT with
non-replaced inline elements, for whom the line-height is the line-height is
the height of the line-box).

At this point the browser has the final, final height of the replaced element,
and will format it within the centre of the line-box.

HTML Primer & Reference Guide 180

Reference Guide:- CSS
We now have an important question:

“What happens if the top of the replaced element is above the top of the text
(or the bottom below the text bottom)?”

The answer is that the line-box height (for that line of inline elements) is
increased to accommodate the element.

As the final item, all the rectangular line-boxes that make up the various lines
of text are stacked immediately below each other, following the flow of
HTML elements.

Effects of Padding, Border and/or Margin:
If it is a non-replaced element, then the answer is simple: none!

Imagine that you have some emphasised text, and you want to create the
emphasis with a dotted border all around the text, so you format an em with
some padding & a border. Then, any text within the em will be formatted in
the line-box with a border, separated from the text by the padding. Very nice.

If the font remains the same then the text baseline will be unaffected.
If the line-height remains the same then the line-box height will be
unaffected, and adjacent line-boxes will be stacked as normal.

If the leading applied is too small & the border extends beyond it... well, the
border will extend above & below into neighbouring line-boxes.

Effects of vertical-align:
vertical-align allows the affected text to be raised or lowered from it’s
default position within the line-box. That can dramatically affect the line-box
height, and thus the appearance of the text. It is doubly difficult because
different browsers have different intrinsic values for the different keywords.
Fortunately, there is also a percentage value available, which can be
negative...

The html sub & sup elements (also available as vertical-align keywords) will,
by default, noticeably increase the line-height. That is because they not only
lower (raise) the text substantially, and—in Firefox24 at least—below (above)
the text-top, with vertical-align they also keep the font-size the same (which
is one clue as to how to fix it).

They key feature for this section is that, if the top of the text rises into the top
leading (and similar at the bottom), then the line-box height will be increased
to accommodate the affected section, in exactly the same way as for replaced
elements. Please note also that this paragraph is describing the real-world of
how browsers do things, rather than how the W3C says that it should be done
(which is essentially: ‘the line-height is the final arbitrator’).

HTML Primer & Reference Guide 181

Reference Guide:- CSS

Box Properties

Properties:
• border (shorthand property)
• border-width (shorthand property)
• clear
• float
• height
• margin (shorthand property)
• padding (shorthand property)
• width

border properties:

• border-bottom (shorthand property)
• border-color
• border-left (shorthand property)
• border-right (shorthand property)
• border-style
• border-top (shorthand property)

border-width properties:

• border-bottom-width
• border-left-width
• border-right-width
• border-top-width

margin properties:

• margin-bottom
• margin-left
• margin-right
• margin-top

padding properties:

• padding-bottom
• padding-left
• padding-right
• padding-top

See also: Getting boxy to understand the W3C box-model.

HTML Primer & Reference Guide 182

Reference Guide:- CSS

Classification Properties

Properties:
• display
• list-style (shorthand property)
• list-style-image
• list-style-position
• list-style-type
• white-space

HTML Primer & Reference Guide 183

Reference Guide:- CSS

Colour & Background Properties

Properties:
• background (shorthand property)
• background-attachment
• background-color
• background-image
• background-position
• background-repeat
• color

Notes:

The following are both the colour of an element:

• background background colour
• color foreground colour

One of the important features to note is that the properties are inherited.
color is inherited directly, but—because the background colour will show
through (by virtue of the default ‘transparent’ value of background-color)
—it also normally inherits.

Different browsers have different background & color defaults, so you are
strongly advised to set these for body as to have a consistent look for the
entire document, whatever it is viewed in.

HTML Primer & Reference Guide 184

Reference Guide:- CSS

Font Properties

Properties:
• font (shorthand property)
• font-family
• font-size
• font-style
• font-variant
• font-weight

HTML Primer & Reference Guide 185

Reference Guide:- CSS

Pseudo-classes & Pseudo-elements

• 1st-line pseudo-element
• 1st-letter pseudo-element
• Anchor pseudo-classes

General Usage

Selectors:
Contextual selector: allowed at the end of the selector:

body p:first-letter { color: purple; }

Combined with classes:
• one pseudo-element allowed per selector
• normal class-names precede pseudo-class/element name
a.external:visited { color: blue; }

p.initial:first-letter { color: red; }
<p class="initial">First paragraph</p>

Combination:
Pseudo elements can be combined:

p { color: red; font-size: 12pt; }
p:first-letter { color: green; font-size: 200%; }
p:first-line { color: blue; }

<p>Some text that ends up on two lines</p>

Pseudo-Class:
Anchor pseudo-classes have no effect on elements other than ‘a’. Therefore,
the element type can be omitted from the selector. The following 2
statements select the same element in CSS1:

a:link { color: red }
 :link { color: red }

HTML Primer & Reference Guide 186

Reference Guide:- CSS

Text Properties

Properties:
• letter-spacing
• line-height
• text-align
• text-decoration
• text-indent
• text-transform
• vertical-align
• word-spacing

see also:
• font (shorthand property)

HTML Primer & Reference Guide 187

Reference Guide:- CSS

Units

Color Units:

This is either a keyword, or a numerical RGB specification.

Keywords: (case-insensitive):
White, Silver. Gray (sic), Black, Red, Maroon, Yellow, Olive, Teal, Aqua,
Green, Lime, Blue, Navy, Fuschia & Purple.

These are originally derived from the Windows’ VGA Palette. The W3C
deliberately does not define those colours in the CSS1 specification (which
means that browsers are free to do so). Below are the original VGA Palette
settings together with their equivalent CSS numeric units:

white
#fff

#ffffff
rgb(255,255,255)

rgb(100%,100%,100%)

silver
#ccc

#c0c0c0
rgb(192,192,192)

rgb(75%,75%,75%)

gray
#888

#808080
rgb(128,128,128)

rgb(50%,50%,50%)

black
#000

#000000
rgb(0,0,0)

rgb(0%,0%,0%)

red
#f00

#ff0000
rgb(255,0,0)

rgb(100%,0%,0%)

maroon
#800

#800000
rgb(128,0,0)

rgb(50%,0%,0%)

yellow
#ff0

#ffff00
rgb(255,255,0)

rgb(100%,100%,0%)

olive
#880

#808000
rgb(128,128,0)

rgb(50%,50%,0%)

teal
#088

#008080
rgb(0,128,128)

rgb(0%,50%,50%)

aqua
#0ff

#00ffff
rgb(0,255,255)

rgb(0%,100%,100%)

green
#080

#008000
rgb(0,128,0)

rgb(0%,50%,0%)

lime
#0f0

#00ff00
rgb(0,255,0)

rgb(0%,100%,0%)

blue
#00f

#0000ff
rgb(0,0,255)

rgb(0%,0%,100%)

navy
#008

#000080
rgb(0,0,128)

rgb(0%,0%,50%)

fuschia
#f0f

#ff00ff
rgb(255,0,255)

rgb(100%,0%,100%)

purple
#808

#800080
rgb(128,255,128)

rgb(50%,100%,50%)

Numeric:
There are 4 formats that may be used; all are specified in the
‘sRGB color-space’ (see also above for examples). All numeric values are
clipped by the browser if out of scope:

• #rgb (hex triplets; 12-bit palette; max 4,096 colours)
• #rrggbb (hex triplets; 24-bit palette; max 16,777,216 colours)
• rgb(x,x,x) (‘x’ = 0 min, 255 max) (integer)
• rgb(y%,y%,y%) (‘y’ = 0.0% min, 100.0% max)

Extras: See overpage for a very useful hex-triplet colour-chart.
A 24-bit palette contains the max number of colours that a human can see.

Note for UK children:
The Americans cannot spell ‘colour’ nor ‘grey’!

HTML Primer & Reference Guide 188

http://www.w3.org/TR/CSS1/

Reference Guide:- CSS

The above chart comes via WDG and is ©1995 Douglas R Jacobson.

HTML Primer & Reference Guide 189

http://www.htmlhelp.com/

Reference Guide:- CSS
Length Units:

Format (in order, no spaces):
1. + / -

default: ‘+’; negative units not always allowed (can also hit implementation limits if so)
2. number

decimal point is optional
3. 2-letter abbeviation

optional for zero

example:
-0.1em

There are 2 kinds of length units:
1. Relative

These scale well between different media. Possibly the best example is if you print a webpage, when
both a monitor & a printer page should look the same, yet at very different resolutions.
supported relative units:

• em
‘em’ == font-size = unit of font width/height
Traditionally this is the height of a capital M in a font, and equal to both it’s height & width.
The definition has been retained for digital fonts, even though some (non-English) fonts do
not contain that character.

• ex
‘ex’ == height of a lowercase ‘x’ in a font
Possibly the least-used unit of length. Like ‘em’, it is defined whether the font contains that
letter or not.

• px
‘px’ = ‘pixel’ (and thus are relative to the canvas)
This unit would be fine if we knew what the size of the canvas, or even the resolution of the
canvas, was, but we cannot, which can make this a most dangerous unit to use.

2. Absolute
These are dependant on the output medium. That is fine if you know what that medium will be, but
can then restrict your audience.
supported absolute units:

• cm
‘cm’ = ‘centimetre’; 1cm == 0.39in

• in
‘in’ = ‘inch’; 1in == 2.54cm

• mm
‘mm’ = ’millimetre’; 10mm == 1cm

• pc
‘pc’ = ‘pica’; 1pc == 12pt; 6pc == 1in

• pt
‘pt’ = ‘point’; 72pt == 1in

Notes:
‘ em ’ and ‘ ex ’: these are relative to the font size of the element itself, except for
‘font-size’, where they refer to the font size of the parent element.

Child elements inherit the computed value, not the relative value.
Browsers are allowed to make implementation-specific changes to lengths.
An example is font-size, where the font gets mapped to the nearest whole
pixel. For all CSS1 properties, further computations and inheritance are then
based on the approximated value & not the original value.

HTML Primer & Reference Guide 190

Reference Guide:- CSS
Percentage Units:

Format: (in order, no spaces):
1. + / -

default: ‘+’; negative units not always allowed (may hit implementation limits if so)
2. number

decimal point is optional
3. ‘%’

example: -120.8%

Notes: Percentage values are always relative to another value; each property that
allows percentage units also defines what value the percentage value refers to.
Most often this is the font size of the element itself.

In all inherited CSS1 properties, if the value is specified as a percentage, child
elements inherit the resultant value, not the percentage value.

URLs:

Format: (in order):
• ‘url(’
• white-space

(optional)
• single quote (') or double quote (") character

(optional) (must be balanced if included)
• The Uniform Resource Locator (URL) itself

as defined in RFC1738
• white-space

(optional)
• ‘)’

example: url(http://www.bg.com/pinkish.gif)

Notes: Parentheses, commas, whitespace characters, single quotes (') and double
quotes (") appearing in a URL must be escaped with a backslash:

‘\(‘, ‘\)’, ‘\,’. ‘\ ’, ‘\'’, ‘\"’

Partial URLs are interpreted relative to the source of the style sheet, not
relative to the document.

Hint:
Make life easy on yourself:

1. Do not use partial URLs
2. URL-encode the URL & avoid having to quote (or back-slash) it at all:

eg
“http://a.tld/with two spaces/”

...becomes...
http://a.tld/with%20two%20spaces/

HTML Primer & Reference Guide 191

http://www.ietf.org/rfc/rfc1738.txt

CSS Properties A-Z

Property Value Syntax

Each CSS Property value in this Guide is given in a syntax that may faze you if you are not a seasoned
coder. It’s not too difficult, and at the bottom of each Property page is an example to try to help.

examples: Some of the syntax that you might expect to see:
• Value: N | NW | NE
• Value: [<length> | thick | thin]{1,4}
• Value: [<family-name> ,]* <family-name>
• Value: <url>? <color> [/ <color>]?
• Value: <url> || <color>

angle brackets:
<length>, <family-name>, <color>, <url>
Words enclosed by angle brackets (‘<>’) are specific types of value. If the
word is a blue link, then that value type may apply to more than one CSS
Property, and you will need to click on the link to see what values can be
entered. If not, then the type will be described further down the page at
“Extras”.

literals:
N, NW, NE, thick, thin
If not enclosed by angle brackets then it is a literal keyword, and to be used
must be entered exactly as shown, without quotes. Any slash (‘/’) or
comma (‘,’) must also appear literally.

a b c
(not exampled at top) More than one thing juxtaposed together means:-

“all must be entered, and in the order shown”.
upright bar:

<length> | thick | thin
The bar (‘|’) means “either/or”, so this example means:-

“<length> or thick or thin” (just one)
double-bar:

<url> || <color>
The double-bar (‘||’) means “either/both”, so this example means:-

“<url> or <color>,or both” (in any order)
square brackets:

[<length> | thick | thin]
Square brackets (‘[]’) are a grouping mechanism. This makes more sense
with the modifiers (bottom).

a b | c || d e
[a b] | [c || [d e]]
(not exampled at top–the two examples are equivalent to each other)

• Juxtaposition is stronger than the double bar
• The double bar is stronger than the bar

modifiers:
* the preceding type, word or group is repeated zero or more times
+ the preceding type, word or group is repeated one or more times
? the preceding type, word or group is optional
{1,4} the preceding is repeated at least 1, and at most, 4 times

HTML Primer & Reference Guide 192

CSS Properties A-Z

CSS Properties A – Z

HTML Primer & Reference Guide 193

CSS Properties A-Z

1st-line pseudo-element

Syntax: :first-line

Description: The ‘first-line’ pseudo-element is used to apply special styles to the first line
as formatted on the canvas. Derived from extensive use in newspapers &
magazines, it is little-used in web documents. There are a limited set of CSS
properties that will be accepted with this element (see ‘Extras’ below).

See also: Anchor pseudo-classes, 1st-line pseudo-element,
1st-letter pseudo-element

Properties:
Group: Pseudo-classes and Pseudo-elements

Values: (n/a)

Initial values: (not defined for pseudo-elements)

% values: (n/a)

Applies to: Block-level elements

Inherited? Yes

Standard: CSS1

Extras:
Accepted CSS
Properties:

• clear
• Colour & Background Properties
• Font Properties
• letter-spacing
• line-height
• text-decoration
• text-transform
• vertical-align
• word-spacing

Extra: CSS1 Core conformance allows all browsers to ignore all
rules with ‘:first-line’ or ‘:first-letter’ in the selector or,
alternatively, only support a subset of the properties on
these pseudo-elements.

Examples:
p:first-line { font-variant: small-caps; }

THE ABOVE SPECIFIES, FOR THE FIRST LINE OF TEXT IN ALL PARAGRAPH ELEMENTS,
that small capitals should be used.

HTML Primer & Reference Guide 194

http://www.w3.org/TR/CSS1/#css1-conformance
http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/#css1-conformance
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

1st-letter pseudo-element

Syntax: :first-letter

Description: The ‘first-letter’ pseudo-element is used to apply special styles to the first
letter as formatted on the canvas. Derived from extensive use in newspapers
& magazines, it is little-used in web documents. There are a limited set of CSS
properties that will be accepted with this element (see ‘Extras’ below).

See also: Anchor pseudo-classes, 1st-line pseudo-element,
1st-letter pseudo-element

Properties:
Group: Pseudo-classes and Pseudo-elements

Values: (n/a)

Initial values: (not defined for pseudo-elements)

% values: (n/a)

Applies to: Block-level elements

Inherited? Yes

Standard: CSS1

Extras:
Accepted CSS
Properties:

• border properties
• clear
• Colour & Background Properties
• float
• Font Properties
• line-height
• margin properties
• padding properties
• text-decoration
• text-transform
• vertical-align (only if ‘float’ is ‘none’)
• word-spacing

Extra: CSS1 Core conformance allows all browsers to ignore all
rules with ‘:first-line’ or ‘:first-letter’ in the selector or,
alternatively, only support a subset of the properties on
these pseudo-elements.

Examples:
p { font-size: 12pt; line-height: 12pt; }
p:first-letter { font-size: 200%; float: left; }
span { text-transform: uppercase; }

he above specifies, for text in all paragraph elements, that a dropcap
initial letter spanning two lines should be used.T

HTML Primer & Reference Guide 195

http://www.w3.org/TR/CSS1/#css1-conformance
http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/#css1-conformance
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

Anchor pseudo-classes

Syntax: a:<pseudo-class-values>

Description: A browser will typically use different styles for new links & recently-visited
links, and yet another style when the mouse hovers over a link; here’s how.
This pseudo-class acts only on a elements with an ‘href’ attribute; each one is
then moved into one (only) of 3 groups. Note: ‘active’ == ‘hover’.

See also: Anchor pseudo-classes, font-variant, font-weight

Properties:
Group: Pseudo-classes and Pseudo-elements

Values: active | link | visited

Initial values: (not defined for pseudo-class properties)

% values: (n/a)

Applies to: a elements with ‘href’ attribute

Inherited? Yes

Standard: CSS1

Extras:
misc: • Pseudo-class & normal class selectors will not match

• Case-insensitive
• target anchors are unaffected
• Can be used contexually:

a:link img { border: solid blue; }

• Can be combined with normal classes:
a.ext:visited { color: blue; }
outside

(normal class names precede pseudo-class names in the selector)

• Reformatting is the browser’s choice
The 3 pseudo-classes may format on the canvas with
different line-heights, widths, etc. Therefore a pseudo-
class-transition—particularly between ‘active’ & either of
the other two—may normally require a page re-format.

Examples:
a:link { color: red; } /* unvisited link */
a:visited { color: blue; } /* visited link */
a:active { color: lime; } /* active link */

The above specifies, for all a elements with a ‘href’ attribute, the text colours
used within their differing states.

HTML Primer & Reference Guide 196

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

background

Syntax: background: <values>

Description: background is a shorthand property for setting any/all of the individual
background properties.

See also: background, background-attachment, background-color,
background-image, background-position, background-repeat,
color

Properties:
Group: Colour & Background Properties

Values: <background-color> || <background-image> ||
<background-repeat> ||
<background-attachment> ||
<background-position>

Initial values: (not defined for shorthand properties)

% values: (n/a)

Applies to: All elements

Inherited? No

Standard: CSS1

Extras:
Values: See the individual properties for all the values that refer.

Note: background always sets all the individual background
properties. Any missing properties are set to their initial
value.

Examples:
p { background: url(chess.png) gray 50% repeat fixed }

The above specifies, as a default for paragraphs, all the possible background
properties.

HTML Primer & Reference Guide 197

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

background-attachment

Syntax: background-attachment: <values>

Description: background-attachment is effective when a background-image has
been specified, and sets whether it is fixed with regard to the canvas, or if it
scrolls along with the content.

See also: background, background-attachment, background-color,
background-image, background-position, background-repeat,
color

Properties:
Group: Colour & Background Properties

Values: scroll | fixed

Initial values: scroll

% values: (n/a)

Applies to: All elements

Inherited? No

Standard: CSS1

Extras:
Extra: CSS1 Core conformance allows all browsers to treat ‘fixed’

as ‘scroll’. (though the W3C hopes that ‘fixed’ will be
supported on at least the html & body elements).

Examples:
body { background-attachment: scroll; }

The above specifies, (as is the default) for the entire document, that a
background image will scroll with the content.

HTML Primer & Reference Guide 198

http://www.w3.org/TR/CSS1/#css1-conformance
http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/#css1-conformance
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

background-color

Syntax: background-color: <values>

Description: background-color sets the background colour of an element.

See also: background, background-attachment, background-color,
background-image, background-position, background-repeat,
color

Properties:
Group: Colour & Background Properties

Values: <color> | transparent

Initial values: transparent

% values: (n/a)

Applies to: All elements

Inherited? No

Standard: CSS1

Extras:
A good habit: Get into the habit—if you specify either color or

background-color—of always specifying both. It will
save you much future grief.

Inherited: In spite of not being inherited, the default of ‘transparent’
means that the colour of parent elements will always show
through. In addition, different browsers on different
platforms may have different values for the body element,
so you are well advised to set both the base color &
background-color for all of your own docs.

Accessibility: Folks are all different. Some have 20:20 vision, others need
to expand the text to have a chance to read it. Some can see
all 16 million colours in a 24-bit palette, yet red-green is the
commonest colour-blindness around (7% of all men).

It is simple: you want it to look good, but give a little
thought as you design your pages, so that all strokes of folks
have a good chance of not thinking it to be completely naff.

Examples:
body { color: yellow; background-color: aqua; }

The above specifies, as a default for the entire document, a splendid combo of
yellow text on an aqua background.

HTML Primer & Reference Guide 199

http://webaim.org/articles/visual/colorblind
http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

background-image

Syntax: background-image: <values>

Description: background-image sets the background image of an element. When
available, the image will overlay the background colour.

See also: background, background-attachment, background-color,
background-image, background-position, background-repeat,
color

Properties:
Group: Colour & Background Properties

Values: <url> | none

Initial values: none

% values: (n/a)

Applies to: All elements

Inherited? No

Standard: CSS1

Extras:
A good habit: Get into the habit of also setting background-color for

when the image is inaccessible.

Examples:
body { background-image: url(marble.gif); color: white; }

The above specifies, as a default for the entire document, a marbled
background, with a default of ‘white’.

HTML Primer & Reference Guide 200

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

background-position

Syntax: background-position: <values>

Description: background-position is effective when a background-image has been
specified, and sets it’s initial postion. See ‘Extras’ for values.

See also: background, background-attachment, background-color,
background-image, background-position, background-repeat,
color

Properties:
Group: Colour & Background Properties

Values: [<percentage> | <length>]{1,2} |
 [top | center | bottom] || [left | center | right]

Initial values: 0% 0%

% values: refer to the size of the element itself

Applies to: Block-level and replaced elements

Inherited? No

Standard: CSS1

Extras:
Values: Important!: ‘top left’ in all below refers to the top-left point

of the element content, and not to the boxes that surround
the padding, border or margin.

Combinations of ‘length’ and ‘%’ values are allowed (eg
‘50% 2cm’), as are negative values. Keywords are single or
pairs, but can NOT be combined with ‘%’ nor ‘length’ values.

background-attachment: If the background image is
fixed with regard to the canvas, the image is placed relative
to the canvas rather than the element.

‘%’ values: ‘0% 0%’ == ‘top left’.
‘100% 100%’ == the bottom-right of image is at element
bottom-right.
‘14% 84%’ == the point 14% across and 84% down the
image is to be placed at the point 14% across and 84% down
the element.

‘length’ values: ‘2cm 2cm’: the upper left corner of the image is placed 2cm
to the right and 2cm below the upper left corner of the
element.
(cont next page)

HTML Primer & Reference Guide 201

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

Two ‘%’ or
‘length’ values:

The 1st value will be the horizontal (x) position; the 2nd value
will be the vertical (y) position.

One ‘%’ or
‘length’ value:

The value will be the x-position, whilst the y-position will be
50%.

Keywords: ‘top left’ == ‘left top’ == ‘0% 0%’
‘top’ == ‘top center’ == ‘center top’ == ‘50% 0’
‘top right’ == ‘right top’ == ‘100% 0%’
‘left’ == ‘left center’ == ‘center left’ == ‘0% 50%’
‘center' == ‘center center’ == ‘50% 50%’
‘right’ == ‘right center’ == ‘center right’ == ‘100% 50%’
‘bottom left’ == ‘left bottom’ == ‘0% 100%’
‘bottom’ == ‘bottom center’ == ‘center bottom’ == ‘50% 100%’
‘bottom right’ == ‘right bottom’ == ‘100% 100%’

Examples:
body { background: url(banner.jpeg) right top; }

The above specifies, as a default for the entire document, a banner placed at
the top right of the entire content.

HTML Primer & Reference Guide 202

CSS Properties A-Z

background-repeat

Syntax: background-repeat: <values>

Description: background-repeat specifies if—and only if—a background-image is
also specified, how (and whether) that image will be repeated. See ‘Extras’ for
the meaning of the Values.

See also: background, background-attachment, background-color,
background-image, background-position, background-repeat,
color

Properties:
Group: Colour & Background Properties

Values: repeat | repeat-x | repeat-y | no-repeat

Initial values: repeat

% values: (n/a)

Applies to: All elements

Inherited? No

Standard: CSS1

Extras:
Values: • repeat: both horizontally and vertically

• repeat-x: just horizontally
• repeat-y: just vertically
• no-repeat: don’t bother with either

Examples:
body { background-repeat: repeat; }

The above specifies, as a default for the entire document, to repeat that
annoying gif endlessly across the entire document.

HTML Primer & Reference Guide 203

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

border

Syntax: border: <values>

Description: border is a shorthand property for setting the same width, colour and style
on all four borders of an element at once. Unlike the shorthand ‘margin’ and
‘padding’ properties, ‘border’ cannot set different values on the four
borders. To do so, one or more of the other border properties must be used.

See also: border, border-top, border-right, border-bottom, border-left

Properties:
Group: Box Properties

Values: <border-width> || <border-style> || <color>

Initial values: (not defined for shorthand properties)

% values: (n/a)

Applies to: All elements

Inherited? No

Standard: CSS1

Extras:
One value only
for each:

One value only may be given for each of border-width,
border-style & color (a total of one, two or three
values).

Order+
specificity is
important:

Due to overlapping functionality, the order in which the
rules are (or not) specified can become important:

blockquote {
 border-color: red;
 border-left: double;
 color: black;
}

The lack of a ‘color’ specification in border-left causes
the left border to be black, whilst others are red.

Examples:
p { border: thin solid red; }

The above specifies, for all paragraphs, a thin solid red border.

HTML Primer & Reference Guide 204

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

border-bottom

Syntax: border-bottom: <values>

Description: border-bottom is a shorthand property for setting the same width, colour
and style on an element’s bottom border. Any omitted values will be set to
their initial values (browser determined if not inherited).

See also: border, border-top, border-right, border-bottom, border-left

Properties:
Group: Border Properties

Values: <border-bottom-width> || <border-style> ||
<color>

Initial values: (not defined for shorthand properties)

% values: (n/a)

Applies to: All elements

Inherited? No

Standard: CSS1

Extras:
One value only
for each:

One value only may be given for each of
border-bottom-width, border-style & color (a total
of one, two or three values).

Examples:
p { border-bottom: thin solid blue; }

The above specifies, for all paragraphs, a thin solid blue
bottom-border.

HTML Primer & Reference Guide 205

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

border-bottom-width

Syntax: border-bottom-width: <values>

Description: border-bottom-width sets the width of an element’s bottom border, using
a keyword or <length>.

See also: border, border-top-width, border-right-width,
border-bottom-width, border-left-width, border-width

Properties:
Group: Border Width Properties

Values: thin | medium | thick | <length>

Initial values: medium

% values: (n/a)

Applies to: All elements

Inherited? No

Standard: CSS1

Extras:
Extra:  Border widths cannot be negative.

 Keyword values are browser-dependent, but the
following will always hold true:

 ‘thin’ <= ‘medium’ <= ‘thick’
 Keyword widths will remain constant throughout

a document, regardless of font-width.

Examples:
h5 { border-bottom-width: thick; }

The above specifies, for h2 headers, to use a thick bottom-border.

HTML Primer & Reference Guide 206

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

border-color

Syntax: border-color: <values>

Description: border-color is a property for setting the colour on all 4 borders at once;
colours may be all the same (1 color value required) or all different (4 color
values required). If 2 or 3 values are given, then missing values are taken
from the opposite side. See ‘Extras’ for the ordering of values.

See also: border, border-color, border-style

Properties:
Group: Border Properties

Values: <color>{1,4}

Initial values: Value of the ‘color’ property

% values: (n/a)

Applies to: All elements

Inherited? No

Standard: CSS1

Extras:
Order &
Values:

One value only may be given to set all 4 borders to the same
colour. Any other number of color values affects the borders
in a specific order:

1. top
2. right
3. bottom
4. left

2 values:
1. top & bottom
2. right & left

3 values:
1. top
2. right & left
3. bottom

Zero color values: the value of the ‘color’ property of the
element itself will take its place

Examples:
p { border-color: blue navy fuschia purple; }

The above specifies, for all paragraphs, a blue top-, navy right-,
fuschia bottom- & purple left-border.

HTML Primer & Reference Guide 207

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

border-left

Syntax: border-left: <values>

Description: border-left is a shorthand property for setting the same width, colour and
style on an element’s left border. Any omitted values will be set to their initial
values (browser determined if not inherited).

See also: border, border-top, border-right, border-bottom, border-left

Properties:
Group: Border Properties

Values: <border-left-width> || <border-style> || <color>

Initial values: (not defined for shorthand properties)

% values: (n/a)

Applies to: All elements

Inherited? No

Standard: CSS1

Extras:
One value only
for each:

One value only may be given for each of
border-left-width, border-style & color (a total of
one, two or three values).

Examples:
p { border-left: thick solid green; }

The above specifies, for all paragraphs, a thick solid green
left-border.

HTML Primer & Reference Guide 208

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

border-left-width

Syntax: border-left-width: <values>

Description: border-left-width sets the width of an element’s left border, using a
keyword or <length>.

See also: border, border-top-width, border-right-width,
border-bottom-width, border-left-width, border-width

Properties:
Group: Border Width Properties

Values: thin | medium | thick | <length>

Initial values: medium

% values: (n/a)

Applies to: All elements

Inherited? No

Standard: CSS1

Extras:
Extra:  Border widths cannot be negative.

 Keyword values are browser-dependent, but the
following will always hold true:

 ‘thin’ <= ‘medium’ <= ‘thick’
 Keyword widths will remain constant throughout

a document, regardless of font-width.

Examples:
h5 { border-left-width: thick; }

The above specifies, for h3 headers, to use a thick left-border.

HTML Primer & Reference Guide 209

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

border-right

Syntax: border-right: <values>

Description: border-right is a shorthand property for setting the same width, colour
and style on an element’s right border. Any omitted values will be set to their
initial values (browser determined if not inherited).

See also: border, border-top, border-right, border-bottom, border-left

Properties:
Group: Border Properties

Values: <border-right-width> || <border-style> || <color>

Initial values: (not defined for shorthand properties)

% values: (n/a)

Applies to: All elements

Inherited? No

Standard: CSS1

Extras:
One value only
for each:

One value only may be given for each of
border-right-width, border-style & color (a total of
one, two or three values).

Examples:
p { border-right: thick solid olive; }

The above specifies, for all paragraphs, a thick solid olive
right-border.

HTML Primer & Reference Guide 210

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

border-right-width

Syntax: border-right-width: <values>

Description: border-right-width sets the width of an element’s right border, using a
keyword or <length>.

See also: border, border-top-width, border-right-width,
border-bottom-width, border-left-width, border-width

Properties:
Group: Border Width Properties

Values: thin | medium | thick | <length>

Initial values: medium

% values: (n/a)

Applies to: All elements

Inherited? No

Standard: CSS1

Extras:
Extra:  Border widths cannot be negative.

 Keyword values are browser-dependent, but the
following will always hold true:

 ‘thin’ <= ‘medium’ <= ‘thick’
 Keyword widths will remain constant throughout

a document, regardless of font-width.

Examples:
h5 { border-right-width: thick; }

The above specifies, for h4 headers, to use a thick right-border.

HTML Primer & Reference Guide 211

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

border-style

Syntax: border-style: <values>

Description: border-style is a property for setting the style on all 4 borders at once;
styles may be all the same (1 value required) or all different (4 values
required). If 2 or 3 values are given, then missing values are taken from the
opposite side. See ‘border-color’ ‘Extras’ for the ordering of values.

See also: border, border-color, border-style

Properties:
Group: Border Properties

Values: none | dotted | dashed | solid | double | groove | ridge | inset | outset

Initial values: none

% values: (n/a)

Applies to: All elements

Inherited? No

Standard: CSS1

Extras:
Value
meanings:

• none
no border (regardless of the ‘<border-width>’ value)

• dotted
a dotted line drawn on top of the background of the element

• dashed
a dashed line drawn on top of the background of the element

• solid
the border is a solid line

• double
a double line drawn on top of the background of the element.
The sum of the two single lines and the space between equals
the ‘<border-width>’ value

• groove
a 3D groove is drawn in colours based on the <color> value

• ridge
 a 3D ridge is drawn in colours based on the <color> value.

• inset
a 3D inset is drawn in colours based on the <color> value

• outset
a 3D outset is drawn in colours based on the <color> value

CSS1 Core Browsers may interpret all of ‘dotted’, ‘dashed’, ‘double’, ‘groove’,
‘ridge’, ‘inset’ and ‘outset’ as ‘solid’

Examples:
#xy34 { border-style: solid double; }

The above specifies, for id #xy34, solid & double (up) borders.

HTML Primer & Reference Guide 212

http://www.w3.org/TR/CSS1/#css1-conformance
http://www.w3.org/TR/CSS1/#css1-conformance
http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

border-top

Syntax: border-top: <values>

Description: border-top is a shorthand property for setting the same width, colour and
style on an element’s top border. Any omitted values will be set to their initial
values (browser determined if not inherited).

See also: border, border-top, border-right, border-bottom, border-left

Properties:
Group: Border Properties

Values: <border-top-width> || <border-style> || <color>

Initial values: (not defined for shorthand properties)

% values: (n/a)

Applies to: All elements

Inherited? No

Standard: CSS1

Extras:
One value only
for each:

One value only may be given for each of
border-top-width, border-style & color (a total of
one, two or three values).

Examples:
p { border-top: medium solid teal; }

The above specifies, for all paragraphs, a medium double teal
top-border.

HTML Primer & Reference Guide 213

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

border-top-width

Syntax: border-top-width: <values>

Description: border-top-width sets the width of an element’s top border, using a
keyword or <length>.

See also: border, border-top-width, border-right-width,
border-bottom-width, border-left-width, border-width

Properties:
Group: Border Width Properties

Values: thin | medium | thick | <length>

Initial values: medium

% values: (n/a)

Applies to: All elements

Inherited? No

Standard: CSS1

Extras:
Extra:  Border widths cannot be negative.

 Keyword values are browser-dependent, but the
following will always hold true:

 ‘thin’ <= ‘medium’ <= ‘thick’
 Keyword widths will remain constant throughout

a document, regardless of font-width.

Examples:
h5 { border-top-width: thick; }

The above specifies, for h5 headers, to use a thick top-border.

HTML Primer & Reference Guide 214

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

border-width

Syntax: border-width: <values>

Description: border-width is a shorthand property (keyword or <length>) for setting
the width on all 4 borders at once; widths may be all the same (1 value), all
different (4 values) or a mixture (2 or 3 values—missing values are taken
from the opposite side). See ‘border-color’ ‘Extras’ for ordering of values.

See also: border, border-top-width, border-right-width,
border-bottom-width, border-left-width, border-width

Properties:
Group: Box Properties

Values: [thin | medium | thick | <length>]{1,4}

Initial values: (not defined for shorthand properties)

% values: (n/a)

Applies to: All elements

Inherited? No

Standard: CSS1

Extras:
Extra:  Border widths cannot be negative.

 Keyword values are browser-dependent, but the
following will always hold true:

 ‘thin’ <= ‘medium’ <= ‘thick’
 Keyword widths will remain constant throughout

a document, regardless of font-width.

Examples:
h6 { border-width: thin; }

The above specifies, for h6 headers, to use a thin border.

HTML Primer & Reference Guide 215

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

clear

Syntax: clear: <values>

Description: clear specifies if an element allows floating elements on its sides. More
specifically, the value of this property lists the sides where floating elements
are not accepted. With clear set to ‘left’, an element will be moved below
any floating element on the left side. With clear set to ‘none’, floating
elements are allowed on all sides.

See also: border, clear, float, height, margin, padding, width

Properties:
Group: Box Properties

Values: none | left | right | both

Initial values: none

% values: (n/a)

Applies to: All elements

Inherited? No

Standard: CSS1

Extras:
Extra: The obvious connection is with the ‘clear’ attribute of br

(introduced in HTML3.2). CSS allows a similar function to be
applied to any element.

Examples:
table { clear: left; }

The above specifies, for all table elements, that they will be displayed below
all floating elements at their left.

HTML Primer & Reference Guide 216

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

color

Syntax: color: <values>

Description: color sets the foreground text colour of an element.

See also: background, background-attachment, background-color,
background-image, background-position, background-repeat,
color

Properties:
Group: Colour & Background Properties

Values: <color>

Initial values: (browser specific)

% values: (n/a)

Applies to: All elements

Inherited? Yes

Standard: CSS1

Extras:
A good habit: Get into the habit—if you specify either color or

background-color—of always specifying both. It will
save you much future grief.

Examples:
body { color: maroon; background-color: fuschia; }

The above specifies, as a default for the entire document, a delightful combo of
maroon text on a fuschia background.

HTML Primer & Reference Guide 217

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

display

Syntax: display: <values>

Description: display is an exciting property that governs how—and indeed whether—an
element will be displayed on the canvas.

See also: display, list-style, list-style-image, list-style-position,
list-style-type, white-space

Properties:
Group: Classification Properties

Values: block | inline | list-item | none

Initial values: block (though also refer to HTML element default)

% values: (n/a)

Applies to: All elements

Inherited? No

Standard: CSS1

Extras:
Extra: The HTML Content model is broadly split between block-level &

inline elements (‘list-items’ are also block-level, with the extra
that they also have a list-item marker). display allows the
author to decide which of the two models the element should
adhere to:

 block: opens a new block-box, positioned relative to adjacent
boxes according to the CSS formatting model.

 inline: opens a new inline-box on the same line as the
previous content; dimensions are according to the formatted
size of the content. margin, border and padding properties
apply to inline elements, but do not have any effect at line
breaks.

 list-item: it does not make any sense to apply this to any
elements other than li, ol & ul.

 none: turns off display of the element, including child
elements and the surrounding box.

CSS1 Core: Browsers may ignore display and use only defaults.

Examples:
em { display: inline; }

The above specifies, for em text, to display inline (which is also the default for
em text)

HTML Primer & Reference Guide 218

http://www.w3.org/TR/CSS1/#css1-conformance
http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/#css1-conformance
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

float

Syntax: float: <values>

Description: float can invalidate the display property. With a value of ‘none’ the
element will be displayed where it appears within the text flow; all other
values will cause it to be treated as a block-level element (invalidating
display). ‘left’ will cause it to be moved left until the nearest block-level
element is reached & text will wrap to the right (all vice-versa for ‘right’).

See also: border, clear, float, height, margin, padding, width

Properties:
Group: Box Properties

Values: left | right | none

Initial values: none

% values: (n/a)

Applies to: All elements

Inherited? No

Standard: CSS1

Extras:
General: float governs how text wraps around an element. The

obvious connection is with the ‘align’ attribute of img
(introduced in HTML3.2). CSS allows a similar function to be
applied to any element.

Specifics: By setting float to ‘left’:

The element is moved to the left until the margin, padding
or border of another block-level element is reached (most
often it’s parent, containing element). The normal flow will
wrap around on the right side. The margins, borders and
padding of the element itself will be honoured, and the
margins never collapse with the margins of adjacent
elements.

Examples:
img { float: right; }

The above specifies, for all img elements,
that they will be displayed at the side of the nearest block-level element to
their right, and that surrounding text—and any other inline elements—will
wrap to their left-hand side.

HTML Primer & Reference Guide 219

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

font

Syntax: font: <values>

Description: font is a shorthand for all the font properties + line-height at once (a
‘font’ is the typeface used in a visual browser to show text). The W3C says:
“The syntax of this property is based on a traditional typographical
shorthand notation to set multiple properties related to fonts”.

See also: font, font-family, font-size, font-style, font-variant,
font-weight

Properties:
Group: Font Properties

Values: [<font-style> || <font-variant> || <font-weight>]?
<font-size> [/ <line-height>]? <font-family>

Initial values: (not defined for shorthand properties)

% values: allowed on <font-size> and <line-height>

Applies to: All elements

Inherited? Yes

Standard: CSS1

Extras:
Font-
Matching:

per-property
matching
rules:

1. ‘font-style’ is tried first. ‘italic’ will be satisfied if
there is either a face in the UA’s font database labeled
with the CSS keyword ‘italic’ (preferred) or ‘oblique’.
Otherwise the values must be matched exactly or font-
style will fail.

2. ‘font-variant’ is tried next. ‘normal’ matches a font
not labeled as ‘small-caps’. (A small-caps font can be
synthesized electronically)

3. ‘font-weight’ is matched next, it will never fail.
4. ‘font-size’ must be matched within a UA-dependent

margin of tolerance. (Typically, sizes for scalable fonts
are rounded to the nearest whole pixel, while the
tolerance for bitmapped fonts could be as large as 20%.)
Further computations, e.g. by ‘em’ values in other
properties, are based on the ‘font-size’ value that is used,
not the one that is specified.

Examples:
p { font: italic bold 12pt/14pt Times, serif; }

The above specifies, for all paragraphs, a 12-point bold, italic Times font with a
14-point line height; if the (specific name) “Times” font is not available to the
browser then it will use a generic serif font instead.

HTML Primer & Reference Guide 220

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/#font

CSS Properties A-Z

font-family

Syntax: font-family: <values>

Description: font-family is a prioritised list of font family names and/or generic family
names; unlike most other CSS1 properties, values are separated by a comma
to indicate that they are alternatives (fonts come in families of same-style
typefaces). Names containing whitespace must be quoted.

See also: font, font-family, font-size, font-style, font-variant,
font-weight

Properties:
Group: Font Properties

Values: [[<family-name> | <generic-family>],]* [<family-name> |
<generic-family>]

Initial values: Determined by browser

% values: (n/a)

Applies to: All elements

Inherited? Yes

Standard: CSS1

Extras:
family-name: The name of a specific Family.

Can be dangerous, as it is dependant on the browser being upon
a device that has that specific Family of fonts installed.

generic-family: (below is the generic, followed by a family example):

• serif (e.g., Times)
• sans-serif (e.g., Arial or Helvetica)
• cursive (e.g., Zapf-Chancery)
• fantasy (e.g., Western)
• monospace (e.g., Courier)

Firefox contains it’s own fonts for all the generics above, so I
cannot reproduce the browser view here; I’ve chosen fonts above
to try to approximate (‘cursive’, ‘fantasy’ are the least accurate).

Examples:
body { font-family: "New Century Schoolbook", serif; }

The above specifies, as the default font for the document, a ‘New Century
Schoolbook’ font (use either single- or double-quotes if there is whitespace in
the name) with a generic serif font if the first is not available.

HTML Primer & Reference Guide 221

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

font-size

Syntax: font-size: <values>

Description: font-size is, at first sight, a straightforward property: the size of the font.
The key feature to keep in mind is that you cannot guess at the size of the
view-window that your user has, which makes using absolute sizes (length)
most dangerous.

See also: font, font-family, font-size, font-style, font-variant,
font-weight

Properties:
Group: Font Properties

Values: <absolute-size> | <relative-size> | <length> | <percentage>

Initial values: medium

% values: Relative to the parent element’s font size

Applies to: All elements

Inherited? Yes

Standard: CSS1

Extras:
absolute-size: Possible values (note: this text is 10pt; ‘px’ transposed to ‘pt’ below):

xx-small | x-small | small | medium | large |

x-large | xx-large
In Firefox (parent:16px) these rendered as:

9px | 10px | 13px | 16px | 18px | 24px | 32px

relative-size: These are intended to be relative to the parent element:

larger | smaller

In Firefox (parent:16px) these rendered as:

18px | 13px

Examples:
em { font-size: 150%; }

The above specifies, for all emphasised text, a larger font; the W3C
suggest to browser manufacturers that they use a 1.5 scaling factor.

HTML Primer & Reference Guide 222

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

font-style

Syntax: font-style: <values>

Description: font-style selects between normal (sometimes referred to as “roman” or
“upright”), italic and oblique (slanted) faces within a font family. The font
that is labeled ‘oblique’ in the browser’s font database may actually have been
generated by electronically slanting a normal font.

See also: font, font-family, font-size, font-style, font-variant,
font-weight

Properties:
Group: Font Properties

Values: normal | italic | oblique

Initial values: normal

% values: (n/a)

Applies to: All elements

Inherited? Yes

Standard: CSS1

Extras:
italic v oblique: Most font families have one font that is ‘italic’. Few have

one that is ‘oblique’. In general, the oblique option is more
slanted than the italic option.

Historical notes: ‘italic’ gained that name in England to
differentiate it from the “English chancery hand”.
‘Chancery-hand’ in 16th Century England was derived from
Gothic script (similar to blackletter) & was angular; The
‘Italian-hand’ was developed in Italy at that period; the pen
was held slanted at a forty-five-degree angle, which allowed
greater speed & also produced slightly slanted writing. All
official documents at the time were hand-written & it was a
legal requirement that they be produced in Chancery-hand
(itself also scrupilously regulated). The development of the
printing-press & typesetting eventually put many thousands
of trained clerks out of business (and provided possibly less
well-paid employment for many thousands more).

Examples:
h1, h2, h3 { font-style: italic; }

The above specifies, for h1, h2 & h3 headings, an italic font. We could then,
perhaps, say to use normal text within h1 emphasised headings:

h1 em { font-style: normal; }

HTML Primer & Reference Guide 223

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

font-variant

Syntax: font-variant: <values>

Description: font-variant selects between a normal font or a SMALL-CAPS font.

See also: font, font-family, font-size, font-style, font-variant,
font-weight

Properties:
Group: Font Properties

Values: normal | small-caps

Initial values: normal

% values: (n/a)

Applies to: All elements

Inherited? Yes

Standard: CSS1

Extras:
What it is: The browser should always get this right.

Some font-families have a small-caps font; many do not. It
should be easy to synthesize it... If you look at this type you
will notice that all the lowercase letters are on the same
level. A small-caps font is supposed to have all-capitals that
are at (slightly more than) the same height as the lowercase
letters. Let’s see if it works with this font:

CAPITALSSMALL-CAPSlowercase

...and the answer is yes (it looks OK).

Examples:
span { font-variant: small-caps; }

The above specifies, for all text within the span element, a SMALL-CAPS FONT.

HTML Primer & Reference Guide 224

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

font-weight

Syntax: font-weight: <values>

Description: font-weight is a method of specifing the weight of a font. Child elements
inherit the resultant weight of the font, and not the keyword. Few font
families have sufficient weights to populate all 9 levels, so choices must be
made by the browser.

See also: font, font-family, font-size, font-style, font-variant,
font-weight

Properties:
Group: Font Properties

Values: normal | bold | bolder | lighter | 100 | 200 | 300 | 400 |
500 | 600 | 700 | 800 | 900

Initial values: (not defined for shorthand properties)

% values: (n/a)

Applies to: All elements

Inherited? Yes

Standard: CSS1

Extras:
Help: The weight of a font is different from it’s size; whatever the

weight, a 12pt/14pt font should always be 12 points high
with a 14 point line-height. That can possibly be most easily
understood with bold text (which most often has
“font-weight: 700” - it depends on both the font, the
browser & the host device). It is very seldom that a font has
even 3 weights in the family, which essentially then reduces
the values to “normal | bold”.

This is what those values look like on Firefox23 using the
browser-supplied, generic serif font:

normal | bold | bolder | lighter
100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900

‘ bolder | lighter’ refer to inherited values from the parent.

Examples:
strong { font: 900; }

The above specifies, for all strong text, the most strongly weighted font
should be used.

HTML Primer & Reference Guide 225

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

height

Syntax: height: <values>

Description: height is suggested to be used principally with replaced elements such as
img. The element will be scaled if necessary (see Extras below).

See also: border, clear, float, height, margin, padding, width

Properties:
Group: Box Properties

Values: <length> | auto

Initial values: auto

% values: (n/a)

Applies to: Block-level and replaced elements

Inherited? No

Standard: CSS1

Extras:
General: Both height & width are considered together to find a

replaced element’s eventual dimensions:

• height = ‘auto’; width = ‘auto’:
set to intrinsic dimensions of element

• height = ‘auto’; width = <length>:
width enforced by scaling, aspect ratio preserved

• height = <length>; width = ‘auto’:
height enforced by scaling, aspect ratio preserved

• height = <length>; width = <length>:
enforced by scaling, aspect ratio ignored

CSS1 Core: Browsers may ignore height (treat it as ‘auto’) if the
element is not a replaced element.

Examples:
img.icon { height: 100px }

The above specifies, for all img elements declared with a class of ‘icon’, that
they will be displayed at a height of 100 pixels (note how that could be an
issue on a very high-density display device).

HTML Primer & Reference Guide 226

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/#css1-conformance
http://www.w3.org/TR/CSS1/#css1-conformance
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

letter-spacing

Syntax: letter-spacing: <values>

Description: letter-spacing normalises / expands / contracts the spacing between
letters. Negative values are allowed. Any value other than ‘normal’ will switch
justification OFF. The browser is the ultimate resultant arbitrator.

See also: font, letter-spacing, line-height, text-align,
text-decoration, text-indent, text-transform, vertical-align,
word-spacing

Properties:
Group: Text Properties

Values: normal | <length>

Initial values: normal

% values: (n/a)

Applies to: All elements

Inherited? Yes

Standard: CSS1

Extras:
length: <length> here is an addition/subtraction from the ‘normal’

intra-character spacing.

Too much extra will make the text look strange.
Too much removed may hit implementation limits.

normal: CSS1 Core conformance allows the browser to interpret
any value of letter-spacing as ‘normal’.

Extra: letter-spacing is an internal function of the font first &
the browser second. Each font contains information not just
on the glyph (the font’s picture of the character, whether
that picture is a bitmap or a mathematical outline) but also
on the ‘normal’ spacing between glyphs. As an
implementor, the browser is then free to modify
(expand/contract) those spacings, which is where this
property has it’s effect. The actual spacing used, however,
will be highly context-specific, dependant on the display
resolution & size, text size, etc..

Examples:
blockquote { letter-spacing: 0.1em; }

The above specifies, for all blockquote elements, a 0.1em increase in
the letter spacing of all text within the element.

HTML Primer & Reference Guide 227

http://www.w3.org/TR/CSS1/#css1-conformance
http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/#css1-conformance
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

line-height

Syntax: line-height: <values>

Description: line-height sets the distance between two adjacent text-lines’ baselines.
Negative values are not allowed.

See also: font, letter-spacing, line-height, text-align,
text-decoration, text-indent, text-transform, vertical-align,
word-spacing

Properties:
Group: Text Properties

Values: normal | <number> | <length> | <percentage>

Initial values: normal

% values: Relative to the font-size of the element itself

Applies to: All elements

Inherited? Yes

Standard: CSS1

Extras:
Help: line-height is normally a little larger than the font-size,

to allow for the character risers & descenders (eg ‘l’ & ‘g’).
Each line of text is considered to have a baseline; the
vertical distance between 2 adjacent baselines is the
‘line-height’.

Values’ Brief:

• normal: a browser-determined ‘reasonable’ value for the
element's font (W3C: 1.0 to 1.2 times the size)

• number: element font-size multiplied by the number;
child elements inherit the factor, not the
resultant

• %-value: as number, except children inherit the
resultant (a browser-computed end-value)

Examples:
div { line-height: 1.2; font-size: 10pt; }

The above specifies, for all div elements, a 10 point font with 12 point
baseline-to-baseline line-height for all text.contained in the element.

HTML Primer & Reference Guide 228

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

list-style

Syntax: list-style: <values>

Description: list-style is a shorthand notation for setting the three properties
‘list-style-type’, ‘list-style-image’ and ‘list-style-position’ at the same place in
the style sheet.

See also: display, list-style, list-style-image, list-style-position,
list-style-type, white-space

Properties:
Group: Classification Properties

Values: [disc | circle | square | decimal | lower-roman | upper-
roman | lower-alpha | upper-alpha | none]
 || [inside | outside]
 || [<url> | none]

Initial values: (not defined for shorthand properties)

% values: (n/a)

Applies to: Elements with display value ‘list-item’

Inherited? Yes

Standard: CSS1

Extras:
Advice: Set list-style rules on ol & ul elements.only. Inheritance

will pass the rules down to the li elements quite naturally,
whilst a combo of cascading order & inheritance can lead to
unexpected results that will have you tearing your hair out.

Examples:
ul { list-style: url(http://png.com/ellipse.png) disc; }

The above specifies, for ul elements, to display a ‘●’ as a list-item marker if the
image is unavailable.

HTML Primer & Reference Guide 229

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

list-style-image

Syntax: list-style-image: <values>

Description: list-style-image sets the image that will be used as the list-item marker.
When the image is available it will replace the marker set with the
list-style-type marker.

See also: display, list-style, list-style-image, list-style-position,
list-style-type, white-space

Properties:
Group: Classification Properties

Values: <url> | none

Initial values: none

% values: (n/a)

Applies to: Elements with display value ‘list-item’

Inherited? Yes

Standard: CSS1

Extras:
Extra: See list-style-type for a possible behaviour when the

image cannot be loaded.

Examples:
ul { list-style-image: url(http://png.com/ellipse.png); }

The above specifies, for ul elements, to display an image as a list-item marker
for contained li elements.

HTML Primer & Reference Guide 230

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

list-style-postion

Syntax: list-style-postion: <values>

Description: list-style-postion determines how the list-item marker is drawn with
regard to the content. See Extras below to see what on earth that means.

See also: display, list-style, list-style-image, list-style-postion,
list-style-type, white-space

Properties:
Group: Classification Properties

Values: inside | outside

Initial values: outside

% values: (n/a)

Applies to: Elements with display value ‘list-item’

Inherited? Yes

Standard: CSS1

Extras:
Values: • outside: this is simply lots of words, intended to wrap

and then show how this marker is outside the text.
• inside: this is simply lots of words, intended to wrap
and then show how this marker is inside the text.

Examples:
ul { list-style: outside; }

The above specifies, for ul elements, to display the list-item marker outside the
text (which is also the default).

HTML Primer & Reference Guide 231

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

list-style-type

Syntax: list-style-type: <values>

Description: list-style-type decides on the appearance of the list-item marker, if
list-style-image is ‘none’, or if the image pointed to by the URL cannot
be displayed.

See also: display, list-style, list-style-image, list-style-position,
list-style-type, white-space

Properties:
Group: Classification Properties

Values: disc | circle | square | decimal | lower-roman | upper-
roman | lower-alpha | upper-alpha | none

Initial values: disc

% values: (n/a)

Applies to: Elements with display value ‘list-item’

Inherited? Yes

Standard: CSS1

Extras:
Values: This an attempt to simulate the list-item markers in this

PDF:

 circle
 disc

 square
1. decimal
a. lower-alpha
i. lower-roman
A. upper-alpha
I. upper-roman

none

Examples:
ol { list-style-type: decimal; }

The above specifies, for ol elements, to display decimal list-item markers (1,2,3,
etc.) (also the default) for contained li elements.

HTML Primer & Reference Guide 232

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

margin

Syntax: margin: <values>

Description: margin is a shorthand property for setting the margin on all 4 sides of an
element at once; margins may be all the same (1 value required) or all
different (4 values required). If 2 or 3 values are given, then missing values
are taken from the opposite side. See ‘border-color’ ‘Extras’ for the
ordering of values.

See also: border, clear, float, height, margin, padding, width

Properties:
Group: Box Properties

Values: [<length> | <percentage> | auto]{1,4}

Initial values: (not defined for shorthand properties)

% values: Refer to width of closest block-level ancestor

Applies to: All elements

Inherited? No

Standard: CSS1

Extras:
Negative
values:

Allowed, but there may be implementation-specific limits.

Extra: The original docs (1996) on this property spoke of each of
the 4 possible values being either a length, a percentage or
‘auto’. The latest CSS1 docs (2008) speak only about
length, but do not explictly exclude the other two, nor speak
on the advisability nor otherwise of mixing value types in a
single declaration.

Remember: The margin is transparent.

See also: margin-top, margin-right, margin-bottom, margin-left

Examples:
body { margin: 2em; }

The above specifies, for the body element, that it should have a margin of
2em (twice the height of the font-height setting) on all 4 sides.

The body element is the outermost visible container for the content. You may
therefore have a philosophical discussion on who the body.margin affects...
...and the answer is the html element, which is the top-level container.

HTML Primer & Reference Guide 233

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

margin-bottom

Syntax: margin-bottom: <values>

Description: margin-bottom sets the margin at the bottom side of an element.

See also: border, margin, margin-top, margin-right, margin-bottom,
margin-left

Properties:
Group: Margin Properties

Values: <length> | <percentage> | auto

Initial values: 0

% values: Refer to width of closest block-level ancestor

Applies to: All elements

Inherited? No

Standard: CSS1

Extras:
Negative
values:

Allowed, but there may be implementation-specific limits.

Remember: The margin is transparent.

Examples:
dt { margin-bottom: 0.5em; }

The above specifies, for all dt elements, that they will have 0.5em margin
outside the bottom border (1em == same as the font-height).

HTML Primer & Reference Guide 234

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

margin-left

Syntax: margin-left: <values>

Description: margin-left sets the margin at the left side of an element.

See also: border, margin, margin-top, margin-right, margin-bottom,
margin-left

Properties:
Group: Margin Properties

Values: <length> | <percentage> | auto

Initial values: 0

% values: Refer to width of closest block-level ancestor

Applies to: All elements

Inherited? No

Standard: CSS1

Extras:
Negative
values:

Allowed, but there may be implementation-specific limits.

Remember: The margin is transparent.

Examples:
dt { margin-left: 0.5em; }

The above specifies, for all dt elements, that they will have 0.5em margin
outside the left border (1em == same as the font-height).

HTML Primer & Reference Guide 235

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

margin-right

Syntax: margin-right: <values>

Description: margin-right sets the margin at the bottom side of an element.

See also: border, margin, margin-top, margin-right, margin-bottom,
margin-left

Properties:
Group: Margin Properties

Values: <length> | <percentage> | auto

Initial values: 0

% values: Refer to width of closest block-level ancestor

Applies to: All elements

Inherited? No

Standard: CSS1

Extras:
Negative
values:

Allowed, but there may be implementation-specific limits.

Remember: The margin is transparent.

Examples:
dt { margin-right: 0.5em; }

The above specifies, for all dt elements, that they will have 0.5em margin
outside the right border (1em == same as the font-height).

HTML Primer & Reference Guide 236

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

margin-top

Syntax: margin-top: <values>

Description: margin-top sets the margin at the bottom side of an element.

See also: border, margin, margin-top, margin-right, margin-bottom,
margin-left

Properties:
Group: Margin Properties

Values: <length> | <percentage> | auto

Initial values: 0

% values: Refer to width of closest block-level ancestor

Applies to: All elements

Inherited? No

Standard: CSS1

Extras:
Negative
values:

Allowed, but there may be implementation-specific limits.

Remember: The margin is transparent.

Examples:
dt { margin-top: 0.5em; }

The above specifies, for all dt elements, that they will have 0.5em margin
outside the top border (1em == same as the font-height).

HTML Primer & Reference Guide 237

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

padding

Syntax: padding: <values>

Description: padding is a shorthand property for setting the padding on all 4 sides of an
element at once; padding may be all the same (1 value required) or all
different (4 values required). If 2 or 3 values are given, then missing values
are taken from the opposite side. See ‘border-color’ ‘Extras’ for the
ordering of values.

See also: border, clear, float, height, margin, padding, width

Properties:
Group: Box Properties

Values: [<length> | <percentage>]{1,4}

Initial values: (not defined for shorthand properties)

% values: Refer to width of closest block-level ancestor

Applies to: All elements

Inherited? No

Standard: CSS1

Extras:
Negative
values:

Cannot be negative.

Extra: In contrast to margin, the latest CSS1 docs (2008) speak
about values, rather than one of the specific value types,
when talking about using 1, 2, 3 or 4 values in the
declaration

Remember: Unlike margin, padding is visible. It’s color, etc.
properties are set with the background property.

See also: padding-top, padding-right, padding-bottom, padding-left

Examples:
h4 { padding: 1em 2em; }

The above specifies, for all h4 elements, that they will have 1em padding at
top & bottom and 2em padding at left & right (1em == same as the
font-height).

HTML Primer & Reference Guide 238

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

padding-bottom

Syntax: padding-bottom: <values>

Description: padding-bottom sets the padding at the bottom side of an element.

See also: border, padding, padding-top, padding-right, padding-bottom,
padding-left

Properties:
Group: Padding Properties

Values: <length> | <percentage>

Initial values: 0

% values: Refer to width of closest block-level ancestor

Applies to: All elements

Inherited? No

Standard: CSS1

Extras:
Negative
values:

Cannot be negative.

Remember: Unlike margin, padding is visible. It’s color, etc.
properties are set with the background property.

Examples:
dt { padding-bottom: 0.5em; }

The above specifies, for all dt elements, that they will have 0.5em padding
inside the bottom border (1em == same as the font-height).

HTML Primer & Reference Guide 239

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

padding-left

Syntax: padding-left: <values>

Description: padding-left sets the padding at the left side of an element.

See also: border, padding, padding-top, padding-right, padding-bottom,
padding-left

Properties:
Group: Padding Properties

Values: <length> | <percentage>

Initial values: 0

% values: Refer to width of closest block-level ancestor

Applies to: All elements

Inherited? No

Standard: CSS1

Extras:
Negative
values:

Cannot be negative.

Remember: Unlike margin, padding is visible. It’s color, etc.
properties are set with the background property.

Examples:
dt { padding-left: 0.5em; }

The above specifies, for all dt elements, that they will have 0.5em padding
inside the left border (1em == same as the font-height).

HTML Primer & Reference Guide 240

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

padding-right

Syntax: padding-right: <values>

Description: padding-right sets the padding at the right side of an element.

See also: border, padding, padding-top, padding-right, padding-bottom,
padding-left

Properties:
Group: Padding Properties

Values: <length> | <percentage>

Initial values: 0

% values: Refer to width of closest block-level ancestor

Applies to: All elements

Inherited? No

Standard: CSS1

Extras:
Negative
values:

Cannot be negative.

Remember: Unlike margin, padding is visible. It’s color, etc.
properties are set with the background property.

Examples:
dt { padding-right: 0.5em; }

The above specifies, for all dt elements, that they will have 0.5em padding
inside the right border (1em == same as the font-height).

HTML Primer & Reference Guide 241

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

padding-top

Syntax: padding-top: <values>

Description: padding-top sets the padding at the top side of an element.

See also: border, padding, padding-top, padding-right, padding-bottom,
padding-left

Properties:
Group: Padding Properties

Values: <length> | <percentage>

Initial values: 0

% values: Refer to width of closest block-level ancestor

Applies to: All elements

Inherited? No

Standard: CSS1

Extras:
Negative
values:

Cannot be negative.

Remember: Unlike margin, padding is visible. It’s color, etc.
properties are set with the background property.

Examples:
dt { padding-top: 0.5em; }

The above specifies, for all dt elements, that they will have 0.5em padding
inside the top border (1em == same as the font-height).

HTML Primer & Reference Guide 242

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

text-align

Syntax: text-align: <values>

Description: text-align determines how text will be aligned within the element.
‘justify’: the actual algorithm used is browser and human language
dependent (some are left-to-right whilst others are right-to-left).

See also: font, letter-spacing, line-height, text-align,
text-decoration, text-indent, text-transform, vertical-align,
word-spacing

Properties:
Group: Text Properties

Values: left | right | center | justify

Initial values: Browser specific

% values: (n/a)

Applies to: Block-level elements

Inherited? Yes

Standard: CSS1

Extras:
justify: CSS1 Core conformance allows the browser to treat

‘justify’ as ‘left’ or ‘right’ (in that case, depending on
whether the element's default writing direction is left-to-
right or right-to-left, respectively.)

Extra: Justification is an external function of the browser which
depends upon the internal function of the font. See
“letter-spacing | Extras | Extra” for more information
on this.

center (for UK children): Americans cannot spell “centre”.

Examples:
div.center { text-align: center; }

As ‘text-align’ inherits, the above specifies that all block-level elements inside
the div element with “class=center” will be centred. Alignments will be

relative to the width of the element and not the canvas.

HTML Primer & Reference Guide 243

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/#css1-conformance
http://www.w3.org/TR/CSS1/#css1-conformance
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

text-decoration

Syntax: text-decoration: <values>

Description: text-decoration describes decorations that are added to the text of (any)
element. If the element has no text (e.g. the ‘img’ element) or is empty (e.g.
‘’), it has no effect. A value of ‘blink’ causes the text to blink.

See also: font, letter-spacing, line-height, text-align, text-
decoration, text-indent, text-transform, vertical-align,
word-spacing

Properties:
Group: Text Properties

Values: none | [underline || overline || line-through || blink]

Initial values: none

% values: (n/a)

Applies to: All elements

Inherited? No, but see Extras below

Standard: CSS1

Extras:
Help +
inheritance:

The colour(s) required for the text decoration should be
derived from the ‘color’ property value. Although not
inherited, elements should match their parent.

Example: if an element is underlined, the line should span
the child elements. The colour of the underlining will
remain the same even if descendant elements have different
‘color’ values.

blink: You cannot imagine how much the Netscape-inspired
‘blink’ attribute came to be hated. The W3C edict is:
“browsers must recognize the keyword ‘blink’, but are not
required to support the blink effect” (rather British).

Examples:
underline, overline, line-through, blink, none (default).

Examples:
a:link, a:visited, a:active { text-decoration: underline;}

The above specifies, for all a elements with a ‘href’ attribute, that they should
be underlined.

HTML Primer & Reference Guide 244

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

text-indent

Syntax: text-indent: <values>

Description: text-indent sets the indentation of the first formatted line of text within a
block-level element. Negative values are allowed but there may be
implementation-specific limits.

See also: font, letter-spacing, line-height, text-align,
text-decoration, text-indent, text-transform, vertical-align,
word-spacing

Properties:
Group: Text Properties

Values: <length> | <percentage>

Initial values: 0

% values: Refers to parent element’s width

Applies to: Block-level elements

Inherited? Yes

Standard: CSS1

Extras:
Breaks: An indentation is NOT inserted in the middle of an element

that was broken by another (such as br)

Examples:
p { text-indent: 3em; }

The above specifies, for all p elements, that the first line of text should
mmmbe indented by 3em.

HTML Primer & Reference Guide 245

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

text-transform

Syntax: text-transform: <values>

Description: text-transform applies a classic set of character-transformations to text.
The precise character-to-character swaps are language-dependent; Latin-1 &
utf-8 should always work, but other encodings may not (browser dependent).

See also: font, letter-spacing, line-height, text-align,
text-decoration, text-indent, text-transform, vertical-align,
word-spacing

Properties:
Group: Text Properties

Values: capitalize | uppercase | lowercase | none

Initial values: none

% values: (n/a)

Applies to: All elements

Inherited? Yes

Standard: CSS1

Extras:
Help: These are the transforms:

Capitalize | UPPERCASE | lowercase | none

might not
work:

CSS1 Core conformance allows the browser to treat all
values as ‘none’ for certain charsets:

1. if not Latin-1

and

2. if “languages for which the transformation is
different from that specified by the case-conversion
tables of Unicode”.

Examples:
dt { text-transform: uppercase; }

The above specifies, for all dt elements, that all text should be UPPER-
CASED.

HTML Primer & Reference Guide 246

http://www.w3.org/TR/CSS1/#css1-conformance
http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/#css1-conformance
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

vertical-align

Syntax: vertical-align: <values>

Description: vertical-align affects the vertical positioning of the element. ‘top’ &
‘bottom’ are relative to the formatted line that the element is part of; other
keywords are relative to the parent element.

See also: font, letter-spacing, line-height, text-align,
text-decoration, text-indent, text-transform, vertical-align,
word-spacing

Properties:
Group: Text Properties

Values: baseline | sub | super | top | text-top | middle | bottom |
text-bottom | <percentage>

Initial values: baseline

% values: Relative to the line-height of the element itself (can be <0)

Applies to: Inline elements

Inherited? No

Standard: CSS1

Extras:
Help: Keyword effects (browsers can differ markedly):

baseline | sub | super | top | text-top | middle | bottom | text-bottom

baseline: align the baseline of the element (or the bottom, if no
element baseline) with the baseline of the parent

sub: subscript the element

super: superscript the element

top: align element top with the tallest element on the line

text-top: align element top with the top of the parent element’s font

middle: align element vertical-midpoint with baseline + ½ the
parent x-height.

bottom: align element bottom with the lowest element on the line

text-bottom: align element bottom with the bottom of the parent
element’s font

Examples:
img { vertical-align: 50%; }

The above specifies, for all img elements, a mid-point vertical alignment.

HTML Primer & Reference Guide 247

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

width

Syntax: width: <values>

Description: width is suggested to be used principally with replaced elements such as
img. The element will be scaled if necessary (see Extras below).

See also: border, clear, float, height, margin, padding, width

Properties:
Group: Box Properties

Values: <length> | auto

Initial values: auto

% values: (n/a)

Applies to: Block-level and replaced elements

Inherited? No

Standard: CSS1

Extras:
General: Both height & width are considered together to find a

replaced element’s eventual dimensions:

• height = ‘auto’; width = ‘auto’:
set to intrinsic dimensions of element

• height = ‘auto’; width = <length>:
width enforced by scaling, aspect ratio preserved

• height = <length>; width = ‘auto’:
height enforced by scaling, aspect ratio preserved

• height = <length>; width = <length>:
enforced by scaling, aspect ratio ignored

CSS1 Core: Browsers may ignore width (treat it as ‘auto’) if the
element is not a replaced element.

Examples:
img.icon { width: 100px }

The above specifies, for all img elements declared with a class of ‘icon’, that
they will be displayed at a width of 100 pixels (note how that could be an
issue on a very high-density display device).

HTML Primer & Reference Guide 248

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/#css1-conformance
http://www.w3.org/TR/CSS1/#css1-conformance
http://www.w3.org/TR/CSS1/

CSS Properties A-Z

white-space

Syntax: white-space: <values>

Description: white-space decides how whitespace inside the element will be handled: as
per ‘normal’ (whitespace is collapsed); as per ‘pre’ (like the HTML pre
element) or as per ‘nowrap’ (wrapping occurs only via HTML br elements).

See also: display, list-style, list-style-image, list-style-position,
list-style-type, white-space

Properties:
Group: Classification Properties

Values: normal | pre | nowrap

Initial values: normal (though also refer to HTML element default)

% values: (n/a)

Applies to: All elements

Inherited? Yes

Standard: CSS1

Extras:
whitespace: The following are all called ‘whitespace’ by HTML4:

• space (‘sp’): ascii: 0x0020; decimal: 32; entity: .
• tab (‘tb’): ascii: 0x0009; decimal: 9; entity: 	.
• form-feed (‘ff’): ascii: 0x000c; decimal: 12; entity: .
• zero width space: ascii: 0x200b; decimal: 8,203;

entity: ​.
• line-feed (‘lf’): ascii: 0x000a; decimal: 10; entity:
.
• carriage return (‘cr’): ascii: 0x000d; decimal: 13;

entity: .

Note: other languages & encodings contain other whitespace
characters; the above are the only ones recognised by HTML4.

‘normal’: Consecutive display-whitespace collapsed to a single space.

‘pre’: Fixed-pitch font; no whitespace collapse; respect tb, ff, lf + cr.

‘nowrap’: Turns OFF (normal) wrap-at-whitespace; also response to ‘ ’

CSS1 Core: Browsers may ignore white-space and use only defaults.

Examples:
pre { white-space: pre; }

The above specifies, for pre elements, to display preformatted. (which
is also the default for text within pre elements).

HTML Primer & Reference Guide 249

http://www.w3.org/TR/CSS1/#css1-conformance
http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/#css1-conformance
http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/REC-html40/struct/text.html#h-9.1
http://www.w3.org/TR/REC-html40/struct/text.html#h-9.1

CSS Properties A-Z

word-spacing

Syntax: word-spacing: <values>

Description: word-spacing sets an addition to the default space between words.
Negative values are allowed but can hit implementation-limits. Do not use
this & justification together.

See also: font, letter-spacing, line-height, text-align,
text-decoration, text-indent, text-transform, vertical-align,
word-spacing

Properties:
Group: Text Properties

Values: normal | <length>

Initial values: normal

% values: (n/a)

Applies to: All elements

Inherited? Yes

Standard: CSS1

Extras:
Extra: Word-spacing is an external function of the browser which

depends upon the internal function of the font. See
“letter-spacing | Extras | Extra” for more information
on this.

normal: CSS1 Core conformance allows the browser to interpret
any value of ‘word-spacing’ as ‘normal’.

Examples:
h1 { word-spacing: 1em; }

The above specifies, for all h1 elements, that all contained text should have
the word-spacing increased by 1em (the horizontal-space occupied by the
letter ‘m’) (w h i c h i s a l o t !)

HTML Primer & Reference Guide 250

http://www.w3.org/TR/CSS1/#css1-conformance
http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/#css1-conformance
http://www.w3.org/TR/CSS1/

Miscellany

Miscellany

Ever since the day, as a young adolescent that loved cartoons, and I read a
small cartoon in my father’s Daily Mirror, which showed a chap in an office
who had just opened one of the lower drawers in a filing cabinet and was
looking down at it in shock, with the caption:

“Good heavens, it’s Miss Cellaneous”

...I’ve loved the word “Miscellany”.

What follows now is a medley (dictionary: “a heterogenous mixture”) of
different CSS items, though strongly biased towards text display, simply
because I also love typography & fonts.

HTML Primer & Reference Guide 251

Miscellany

Quirks Mode

Most of the time you are going to want to avoid this within your webpages. To
do so is fairly simple:

To avoid: Include a DOCTYPE declaration above every HTML document.

And yes: it really is as simple as that (although also read the following links).
As to how & why ‘Quirks mode’ originated, and what it means in practice,
that is a very long & tortuous tale which I’m not going to try to reproduce in
full here – it will just be the headlines.

Read More:
• http://www.quirksmode.org/css/quirksmode.html

(scroll halfway down to find some useful test pages)
• http://www.cs.tut.fi/~jkorpela/quirks-mode.html

What it causes:
In a sentence, it causes MSIE (Internet Explorer) to behave the same in it’s
page-layout as Internet Explorer 5.5, and most other browsers to behave the
same as Netscape 4 (released in 1997), each of which had horribly broken CSS
support; moreover, broken in different ways to each other).

Why?:
At the point of release of their v4 web-browsers in 1997, Netscape &
Microsoft were the providers of the two main methods used by the world to
access the Internet: it was either “Netscape 4” or “Internet Explorer 4”. Each
company was also engaged in a war to gain control of the Desktop and, in
particular, of the Browser. Their focus was upon each other rather than upon
their users. Their implementation of the newly-available CSS was each buggy
in the extreme (neither conformed 100% to the W3C standard). Web authors
had to choose to design for one browser or the other.

Later, conformance to web-standards became an issue that all browser
manufacturers agreed that they had to pay attention to. Yet, because of the
earlier history, the many millions of web-pages on the Internet either had no
CSS, or had CSS that was largely non-standard. ‘Quirks mode’ was an attempt
by those manufacturers to try to support those old pages whilst providing
standards-compliance for new pages.

One curiosity of the DOCTYPE declaration is that it does not appear within
any of the formal HTML standards, yet is mentioned within the comments of
all of the DTDs. Microsoft started switching mode with MSIE 5 on the Mac, and
then with MSIE 6 on all platforms, and all other browsers followed suit. If the
top of the HTML contains a DOCTYPE then the rendering mode is ‘Strict’
(“Standards compliance mode”), else it is Quirky. Meanwhile,
MSIE 5.5 Windows + Netscape 4 (and earlier) are in permanent Quirks mode.

HTML Primer & Reference Guide 252

http://www.cs.tut.fi/~jkorpela/quirks-mode.html
http://www.quirksmode.org/css/quirksmode.html

Miscellany
The picture today:

With the earlier mention of the “Browser Wars” (it flared up near the end of
the last millenium, and near the start had Netscape & Microsoft
essentially sharing the browser market 50:50), I thought that you may be
interested to see a snapshot of the web browsers used by humans today
(drawn from my own website, so not necessarily typical across the web):

Browser Use for Modem-Help, UK; October 2013
Grand total = 100%
(individual totals are for all versions of that browser)

1. Google Chrome: 37.62%
2. Firefox: 32.56%
3. Internet Explorer 18.15%
4. Opera: 4.83%
5. Safari 4.63%
6. Android Phone 1.61%
7. Mozilla 0.44%
8. Netscape 0.13%
9. Other 0.03%

Microsoft Internet Explorer:
• January 2013: 27.46%
• January 2012: 30.78%
• January 2011: 37.10%
• January 2010: 48.10%

HTML Primer & Reference Guide

Google Chrome

Firefox

Internet Explorer

Opera

Safari

Andoid Phone

Mozilla

Netscape

Other

2005 2006 2007 2008 2009 2010 2011 2012 2013
0%

20%

40%

60%

80%

100%

All Others

Google Chrome

Firefox

Internet Explorer

253

http://forums.modem-help.co.uk/viewtopic.php?t=10138&start=3

Miscellany

Column Layouts, CSS1

The bottom line for this is, in my personal view, not to bother. I spent 7 days
in 2003, 18 hours a day, trying my best to produce a CSS1-only file; I
discovered in the process that CSS1 is not fit for purpose – a deeply frustrating
experience, particularly as I had fully committed to the principle of the
separation of style from content that is at the heart of CSS. However, I had a
new site to construct & zero income until it appeared...

Using a top-level table made page-layout a doddle to accomplish, and it was
consistent across all browsers. Trying to do the same using pure CSS1 required
non-standard hacks; worse, those hacks would need updating with each new
version release from one or another Browser. It was a Gordian Knot of epic &
growing proportions, and using tables was the sword that solved them all in
one fell (and foul) swoop.

You will understand from the previous paragraphs, therefore, that I consider
the following links of historical interest only (I researched them fresh in
November 2013, and found the same links as in 2003):

• Little Boxes
A plethora of different layouts from Owen Briggs (marvellous design)

• Blue Robot Layouts
• glish.com

Warning! Broken .asp pages!

HTML Primer & Reference Guide 254

http://www.glish.com/css/
http://www.bluerobot.com/web/layouts/
http://www.thenoodleincident.com/tutorials/box_lesson/boxes.html

Miscellany

Text grids using only CSS

A background grid pattern on the page is mighty useful for testing purposes
whilst designing your pages, and especially for text layout. The usual way of
doing this pre-CSS was to use specially-made .gif files attached to the body
element using the ‘background’ property, but that is just so last millenium.

The picture of the webpage below uses CSS3 properties to achieve a pure-CSS
grid (the HTML, which includes embedded CSS, is below it). Any modern
browser should show it fine (the pic is of Firefox 24.0). Other pages on text
within this miscellany use the identical CSS.

HTML Primer & Reference Guide 255

Miscellany

There are two keys to getting text to line-up upon the grid, so that the text
baseline sits upon a gridline:

1. background-size (within ‘#content’)
Both x & y need to be set to the same size as the font line-height

2. padding-top (within ‘#content’)
This needs a small calculation.

To help you understand it, first recall that CSS places the text centrally
within the line-box, and that effectively means that half the leading is
added above & half added below the text. Next, recall that the leading
is the difference between the line-height & the font height (which is the
font-size). Finally, recall that when a font is described as
“100pt/120pt”, that means “font-size/line-height”, (there are
72 points in an inch (2.54cm)).

The effect of top padding is to push the content (but not the
background) down. The amount required here is:

= ½ * (font-size + (½ * leading))
= ½ * (100pt + (½ * 20pt))
= ½ * 110pt
= 55pt

HTML Primer & Reference Guide

<!DOCTYPE html>
<html>
 <head>
 <title>Grid Test</title>
 <style type="text/css">
 html {
 height: 100%;
 }
 body {
 margin: 0;
 padding: 0;
 height: 100%;
 background-color: #434343;
/* background-image:linear-gradient(#434343, #282828);*/
 color: white;
 font: 100pt/120pt serif;
 }
 #content{
 background-color: transparent;
 background-image: linear-gradient(0deg, transparent 24%, rgba(255,
255, 255, .05) 25%, rgba(255, 255, 255, .05) 26%, transparent 27%,
transparent 74%, rgba(255, 255, 255, .05) 75%, rgba(255, 255, 255, .05)
76%, transparent 77%, transparent), linear-gradient(90deg, transparent
24%, rgba(255, 255, 255, .05) 25%, rgba(255, 255, 255, .05) 26%,
transparent 27%, transparent 74%, rgba(255, 255, 255, .05) 75%, rgba(255,
255, 255, .05) 76%, transparent 77%, transparent);
 margin: 0;
 padding: 0;
 height: 100%;
 background-size: 120pt 120pt;
 padding-top: 55pt;
 }
 </style>
 </head>
 <body>
 <div id=content></div>
 </body>
</html>

256

Miscellany

Accurate Superscript & Subscripts

Using either the HTML sup and/or sub will make a dog’s dinner of your
carefully-crafted text pages (examples later). Unfortunately, using CSS
“vertical-align=super” and/or “vertical-align=sub” on their own will do
exactly the same. In this instance, both the W3C and the browser designers
have conspired together to achieve that. Here’s how to do it right:

the CSS:

the HTML:

The above uses a CSS text-grid. It all looks perfectly normal, until you see the
havoc that will ensue otherwise (and you will then also understand the reason
for the red border box) (next pages):

HTML Primer & Reference Guide

sup {
 font-size: 68%;
 line-height: 68%
}

<body><div id=content>
 1st text for testing

 2nd text for testing

 3rd text for testing
</div></body>

257

Miscellany
Here is some text using a CSS text-grid. The earlier CSS for sup is now missing,
so this is default browser formatting from now on (Firefox 24.0):

the HTML:

The effect of HTML ‘sup’:

the HTML:

HTML Primer & Reference Guide

<body><div id=content>
 Any text for testing

 Any ^{text} for testing

 Any text for testing
</div></body>

<body><div id=content>
 Any text for testing

 Any text for testing

 Any text for testing
</div></body>

258

Miscellany
If you look closely, you will see that the browser has shrunk ‘text’ & raised it
into superscript position. Unfortunately, in the process it has pushed down
the rest of the text-line, so that neither it nor the last line of text sit upon their
original baselines any more (only the top line is unaffected).

Imagine if you had 2 adjacent columns of text; following the superscript, the
lines of text would be out of kilter, and the whole page would look most
unprofessional.

The effect of CSS ‘vertical-align: super’:
You would hope that CSS formatting would fix the above; if anything, it is
worse (and also shows that the Firefox designers may be ignoring the W3C
guidelines for line-box formatting):

the HTML:

Look closely, and you will see that the middle ‘text’ is upon it’s original
baseline, whilst the rest of the text-line has been dropped until ‘text’ is in
superscript position with regard to the rest of the text-line. Gordon Bennett!
Wot a brain-dead way of arranging matters! Well, whatever their reasons
for doing things that way, they have ensured that the entire page will just look
silly.

HTML Primer & Reference Guide

<body><div id=content>
 Any text for testing

 Any text for testing

 Any text for testing
</div></body>

259

Miscellany

Google Guidelines for HTML & CSS

The words below come from a document obtained on 6 October 2013, and
saved as plain-text. It is guidelines issued by Google to it’s minions on useage
of HTML + CSS within collaborative projects. I thought that it had some useful
things to say, and that folks reading this PDF may also find it useful.

Revision 2.23:
This style guide contains many details that are initially hidden from view.
They are marked by the triangle icon, which you see here on your left. Click it
now. You should see “Hooray” appear below.

Hooray! Now you know you can expand points to get more details.
Alternatively, there’s a “toggle all” at the top of this document.

Purpose:
This document defines formatting and style rules for HTML and CSS. It aims
at improving collaboration, code quality, and enabling supporting
infrastructure. It applies to raw, working files that use HTML and CSS,
including GSS files. Tools are free to obfuscate, minify, and compile as long as
the general code quality is maintained.

Omit the protocol from embedded resources:
Omit the protocol portion (|http:|, |https:|) from URLs pointing to images
and other media files, style sheets, and scripts unless the respective files are
not available over both protocols.

Omitting the protocol—which makes the URL relative—prevents mixed
content issues and results in minor file size savings.

<!-- Not recommended --> <script
src="http://www.google.com/js/gweb/analytics/autotrack.js"></script>

<!-- Recommended --> <script
src="//www.google.com/js/gweb/analytics/autotrack.js"></script>

/* Not recommended */ .example { background:
url(http://www.google.com/images/example); }

/* Recommended */ .example { background:
url(//www.google.com/images/example); }

Indent by 2 spaces at a time:
Don’t use tabs or mix tabs and spaces for indentation.

Use only lowercase:
All code has to be lowercase: This applies to HTML element names,
attributes, attribute values (unless |text/CDATA|), CSS selectors, properties,
and property values (with the exception of strings).

HTML Primer & Reference Guide 260

http://google-styleguide.googlecode.com/svn/trunk/htmlcssguide.xml

Miscellany
<!-- Not recommended --> Home

<!-- Recommended -->

/* Not recommended */ color: #E5E5E5;

/* Recommended */ color: #e5e5e5;

Remove trailing white spaces:
Trailing white spaces are unnecessary and can complicate diffs.

<!-- Not recommended --> <p>What?_

<!-- Recommended --> <p>Yes please.

Use UTF-8 (no BOM):
Make sure your editor uses UTF-8 as character encoding, without a byte
order mark.

Specify the encoding in HTML templates and documents via |
<meta charset="utf-8">|. Do not specify the encoding of style sheets as these
assume UTF-8.

(More on encodings and when and how to specify them can be found in
Handling character encodings in HTML and CSS
<http://www.w3.org/International/tutorials/tutorial-char-enc/>.)

Explain code as needed, where possible:
Use comments to explain code: What does it cover, what purpose does it
serve, why is respective solution used or preferred?

(This item is optional as it is not deemed a realistic expectation to always
demand fully documented code. Mileage may vary heavily for HTML and CSS
code and depends on the project’s complexity.)

Mark todos and action items with |TODO|:
Highlight todos by using the keyword |TODO| only, not other common
formats like |@@|.

Append a contact (username or mailing list) in parentheses as with the
format |TODO(contact)|.

Append action items after a colon as in |TODO: action item|.

{# TODO(john.doe): revisit centering #} <center>Test</center>
<!-- TODO: remove optional tags --> Apples Oranges

Use HTML5:
HTML5 (HTML syntax) is preferred for all HTML documents:
|<!DOCTYPE html>|.

(It’s recommended to use HTML, as |text/html|. Do not use XHTML.
XHTML, as |application/xhtml+xml| <http://hixie.ch/advocacy/xhtml>,
lacks both browser and infrastructure support and offers less room for
optimization than HTML.)

HTML Primer & Reference Guide 261

http://hixie.ch/advocacy/xhtml
http://www.w3.org/International/tutorials/tutorial-char-enc/

Miscellany
Although fine with HTML, do not close void elements, i.e. write |
|, not
|
|.

Use valid HTML where possible:
Use valid HTML code unless that is not possible due to otherwise
unattainable performance goals regarding file size.

Use tools such as the W3C HTML validator <http://validator.w3.org/nu/>
to test.

Using valid HTML is a measurable baseline quality attribute that contributes
to learning about technical requirements and constraints, and that ensures
proper HTML usage.

<!-- Not recommended --> <title>Test</title> <article>This is only a test.

<!-- Recommended --> <!DOCTYPE html> <meta charset="utf-8">
<title>Test</title> <article>This is only a test.</article>

Use HTML according to its purpose:
Use elements (sometimes incorrectly called “tags”) for what they have been
created for. For example, use heading elements for headings, |p| elements for
paragraphs, |a| elements for anchors, etc.

Using HTML according to its purpose is important for accessibility, reuse,
and code efficiency reasons.

<!-- Not recommended --> <div onclick="goToRecommendations();">All
recommendations</div>

<!-- Recommended --> All recommendations

Provide alternative contents for multimedia:
For multimedia, such as images, videos, animated objects via |canvas|, make
sure to offer alternative access. For images that means use of meaningful
alternative text (|alt|) and for video and audio transcripts and captions, if
available.

Providing alternative contents is important for accessibility reasons: A blind
user has few cues to tell what an image is about without |@alt|, and other
users may have no way of understanding what video or audio contents are
about either.

(For images whose |alt| attributes would introduce redundancy, and for
images whose purpose is purely decorative which you cannot immediately
use CSS for, use no alternative text, as in |alt=""|.)

<!-- Not recommended -->

<!-- Recommended --> <img src="spreadsheet.png" alt="Spreadsheet
screenshot.">

HTML Primer & Reference Guide 262

http://validator.w3.org/nu/
mailto:%7C@alt

Miscellany
Separate structure from presentation from behavior:

Strictly keep structure (markup), presentation (styling), and behavior
(scripting) apart, and try to keep the interaction between the three to an
absolute minimum.

That is, make sure documents and templates contain only HTML and HTML
that is solely serving structural purposes. Move everything presentational
into style sheets, and everything behavioral into scripts.

In addition, keep the contact area as small as possible by linking as few style
sheets and scripts as possible from documents and templates.

Separating structure from presentation from behavior is important for
maintenance reasons. It is always more expensive to change HTML
documents and templates than it is to update style sheets and scripts.

<!-- Not recommended --> <!DOCTYPE html> <title>HTML sucks</title> <link
rel="stylesheet" href="base.css" media="screen"> <link rel="stylesheet"
href="grid.css" media="screen"> <link rel="stylesheet" href="print.css"
media="print"> <h1 style="font-size: 1em;">HTML sucks</h1> <p>I’ve read
about this on a few sites but now I’m sure: <u>HTML is stupid!!1</u>
<center>I can’t believe there’s no way to control the styling of my website
without doing everything all over again!</center>

<!-- Recommended --> <!DOCTYPE html> <title>My first CSS-only
redesign</title> <link rel="stylesheet" href="default.css"> <h1>My first
CSS-only redesign</h1> <p>I’ve read about this on a few sites but today I’m
actually doing it: separating concerns and avoiding anything in the HTML of
my website that is presentational. <p>It’s awesome!

Do not use entity references:
There is no need to use entity references like |—|, |”|, or |
☺|, assuming the same encoding (UTF-8) is used for files and editors
as well as among teams.

The only exceptions apply to characters with special meaning in HTML (like |
<| and |&|) as well as control or “invisible” characters (like no-break spaces).

<!-- Not recommended --> The currency symbol for the Euro is
“&eur;”.

<!-- Recommended --> The currency symbol for the Euro is “€”.

Omit optional tags (optional):
For file size optimization and scannability purposes, consider omitting
optional tags. The HTML5 specification
<http://www.whatwg.org/specs....html#syntax-tag-omission> defines
what tags can be omitted.

(This approach may require a grace period to be established as a wider
guideline as it’s significantly different from what web developers are typically
taught. For consistency and simplicity reasons it’s best served omitting all
optional tags, not just a selection.)

<!-- Not recommended --> <!DOCTYPE html> <html> <head> <title>Spending
money, spending bytes</title> </head> <body> <p>Sic.</p> </body> </html>

HTML Primer & Reference Guide 263

http://www.whatwg.org/specs/web-apps/current-work/multipage/syntax.html#syntax-tag-omission

Miscellany
<!-- Recommended --> <!DOCTYPE html> <title>Saving money, saving
bytes</title> <p>Qed.

Omit |type| attributes for style sheets and scripts:
Do not use |type| attributes for style sheets (unless not using CSS) and scripts
(unless not using JavaScript).

Specifying |type| attributes in these contexts is not necessary as HTML5
implies |text/css| <http://www.whatwg.org/specs...html#attr-style-type>
and |text/javascript| <http://www.whatwg.org/sp...html#attr-script-type>
as defaults. This can be safely done even for older browsers.

<!-- Not recommended --> <link rel="stylesheet"
href="//www.google.com/css/maia.css" type="text/css">

<!-- Recommended --> <link rel="stylesheet"
href="//www.google.com/css/maia.css">

<!-- Not recommended --> <script
src="//www.google.com/js/gweb/analytics/autotrack.js"
type="text/javascript"></script>

<!-- Recommended --> <script
src="//www.google.com/js/gweb/analytics/autotrack.js"></script>

Use a new line for every block, list, or table element, and indent every such child
element:
Independent of the styling of an element (as CSS allows elements to assume a
different role per |display| property), put every block, list, or table element on
a new line.

Also, indent them if they are child elements of a block, list, or table element.

(If you run into issues around whitespace between list items it’s acceptable to
put all |li| elements in one line. A linter is encouraged to throw a warning
instead of an error.)

<blockquote>
 <p>Space, the final frontier.</p>
</blockquote>

 Moe Larry Curly

<table>
 <thead>
 <tr>
 <th scope="col">Income
 <th scope="col">Taxes
 <tbody>
 <tr>
 <td>$ 5.00
 <td>$4.50
</table>

When quoting attributes values, use double quotation marks:
Use double (|""|) rather than single quotation marks (|''|) around attribute
values.

HTML Primer & Reference Guide 264

http://www.whatwg.org/specs/web-apps/current-work/multipage/scripting-1.html#attr-script-type
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#attr-style-type

Miscellany
<!-- Not recommended --> Sign
in

<!-- Recommended --> Sign
in

Use valid CSS where possible:
Unless dealing with CSS validator bugs or requiring proprietary syntax, use
valid CSS code.

Use tools such as the W3C CSS validator
<http://jigsaw.w3.org/css-validator/> to test.

Using valid CSS is a measurable baseline quality attribute that allows to spot
CSS code that may not have any effect and can be removed, and that ensures
proper CSS usage.

Use meaningful or generic ID and class names:
Instead of presentational or cryptic names, always use ID and class names
that reflect the purpose of the element in question, or that are otherwise
generic.

Names that are specific and reflect the purpose of the element should be
preferred as these are most understandable and the least likely to change.

Generic names are simply a fallback for elements that have no particular or
no meaning different from their siblings. They are typically needed as
“helpers.”

Using functional or generic names reduces the probability of unnecessary
document or template changes.

/* Not recommended: meaningless */ #yee-1901 {}

/* Not recommended: presentational */ .button-green {} .clear {}

/* Recommended: specific */ #gallery {} #login {} .video {}

/* Recommended: generic */ .aux {} .alt {}

Use ID and class names that are as short as possible but as long as necessary:
Try to convey what an ID or class is about while being as brief as possible.

Using ID and class names this way contributes to acceptable levels of
understandability and code efficiency.

/* Not recommended */ #navigation {} .atr {} /*

Recommended */ #nav {} .author {}

Avoid qualifying ID and class names with type selectors:
Unless necessary (for example with helper classes), do not use element names
in conjunction with IDs or classes.

Avoiding unnecessary ancestor selectors is useful for performance reasons
<http://www.stevesouders.com/blog/...simplifying-css-selectors/>.

HTML Primer & Reference Guide 265

http://jigsaw.w3.org/css-validator/
http://www.stevesouders.com/blog/2009/06/18/simplifying-css-selectors/

Miscellany
/* Not recommended */ ul#example {} div.error {}

/* Recommended */ #example {} .error {}

Use shorthand properties where possible:
CSS offers a variety of shorthand
<http://www.w3.org/TR/CSS21/about.html#shorthand> properties (like |
font|) that should be used whenever possible, even in cases where only one
value is explicitly set.

Using shorthand properties is useful for code efficiency and
understandability.

/* Not recommended */ border-top-style: none; font-family: palatino,
georgia, serif; font-size: 100%; line-height: 1.6; padding-bottom: 2em;
padding-left: 1em; padding-right: 1em; padding-top: 0;

/* Recommended */ border-top: 0; font: 100%/1.6 palatino, georgia, serif;
padding: 0 1em 2em;

Omit unit specification after “0” values:
Do not use units after |0| values unless they are required.

margin: 0; padding: 0;

Omit leading “0”s in values:
Do not use put |0|s in front of values or lengths between -1 and 1.

font-size: .8em;

Use 3 character hexadecimal notation where possible:
For color values that permit it, 3 character hexadecimal notation is shorter
and more succinct.

/* Not recommended */ color: #eebbcc; /*

Recommended */ color: #ebc;

Prefix selectors with an application-specific prefix (optional):
In large projects as well as for code that gets embedded in other projects or
on external sites use prefixes (as namespaces) for ID and class names. Use
short, unique identifiers followed by a dash.

Using namespaces helps preventing naming conflicts and can make
maintenance easier, for example in search and replace operations.

.adw-help {} /* AdWords */
#maia-note {} /* Maia */

Separate words in ID and class names by a hyphen:
Do not concatenate words and abbreviations in selectors by any characters
(including none at all) other than hyphens, in order to improve
understanding and scannability.

HTML Primer & Reference Guide 266

http://www.w3.org/TR/CSS21/about.html#shorthand

Miscellany
/* Not recommended: does not separate the words “demo” and “image” */
.demoimage {}
/* Not recommended: uses underscore instead of hyphen */ .error_status {}

/* Recommended */ #video-id {} .ads-sample {}

Avoid user agent detection as well as CSS “hacks”—try a different approach first:
It’s tempting to address styling differences over user agent detection or
special CSS filters, workarounds, and hacks. Both approaches should be
considered last resort in order to achieve and maintain an efficient and
manageable code base. Put another way, giving detection and hacks a free
pass will hurt projects in the long run as projects tend to take the way of least
resistance. That is, allowing and making it easy to use detection and hacks
means using detection and hacks more frequently—and more frequently is
too frequently.

Alphabetize declarations:
Put declarations in alphabetical order in order to achieve consistent code in a
way that is easy to remember and maintain.

Ignore vendor-specific prefixes for sorting purposes. However, multiple
vendor-specific prefixes for a certain CSS property should be kept sorted (e.g.
-moz prefix comes before -webkit).

background: fuchsia;
border: 1px solid;
-moz-border-radius: 4px;
-webkit-border-radius: 4px;

border-radius: 4px;
color: black;
text-align: center;
text-indent: 2em;

Indent all block content:
Indent all block content
<http://www.w3.org/TR/CSS21/syndata.html#block>, that is rules within
rules as well as declarations, so to reflect hierarchy and improve
understanding.

@media screen, projection {
 html {
 background: #fff;
 color: #444;
 }
}

Use a semicolon after every declaration:
End every declaration with a semicolon for consistency and extensibility
reasons.

/* Not recommended */ .test { display: block; height: 100px }

/* Recommended */ .test { display: block; height: 100px; }

Use a space after a property name’s colon:
Always use a single space between property and value (but no space between
property and colon) for consistency reasons.

HTML Primer & Reference Guide 267

http://www.w3.org/TR/CSS21/syndata.html#block

Miscellany
/* Not recommended */ h3 { font-weight:bold; }

/* Recommended */ h3 {font-weight: bold; }

Use a space between the last selector and the declaration block:
Always use a single space between the last selector and the opening brace that
begins the declaration block
<http://www.w3.org/TR/CSS21/syndata.html#rule-sets>.

The opening brace should be on the same line as the last selector in a given
rule.

/* Not recommended: missing space */
#video{
 margin-top: 1em;
}

/* Not recommended: unnecessary line break */
#video
{
 margin-top: 1em;
} /*

Recommended */
#video {
 margin-top: 1em;
}

Separate selectors and declarations by new lines:
Always start a new line for each selector and declaration.

/* Not recommended */
a:focus, a:active {
 position: relative; top: 1px;
}

/* Recommended */
 h1, h2, h3 {
 font-weight: normal;
 line-height: 1.2;
}

Separate rules by new lines:
Always put a blank line (two line breaks) between rules.

html {
 background: #fff;
}

body {
 margin: auto;
 width: 50%;
}

Use single quotation marks for attribute selectors and property values:
Use single (|''|) rather than double (|""|) quotation marks for attribute
selectors or property values.

Do not use quotation marks in URI values (|url()|):
Exception: If you do need to use the |@charset| rule, use double quotation
marks—single quotation marks are not permitted
<http://www.w3.org/TR/CSS21/syndata.html#charset>.

HTML Primer & Reference Guide 268

http://www.w3.org/TR/CSS21/syndata.html#charset
http://www.w3.org/TR/CSS21/syndata.html#rule-sets

Miscellany
/* Not recommended */

@import url("//www.google.com/css/maia.css");
html {
 font-family: "open sans", arial, sans-serif;
}

 /* Recommended */
@import url(//www.google.com/css/maia.css);
html {
 font-family: 'open sans', arial, sans-serif;
}

Group sections by a section comment (optional):
If possible, group style sheet sections together by using comments. Separate
sections with new lines.

/* Header */
#adw-header {}
/* Footer */
#adw-footer {}
/* Gallery */
.adw-gallery {}

/Be consistent./
If you’re editing code, take a few minutes to look at the code around you and
determine its style. If they use spaces around all their arithmetic operators,
you should too. If their comments have little boxes of hash marks around
them, make your comments have little boxes of hash marks around them too.

The point of having style guidelines is to have a common vocabulary of
coding so people can concentrate on what you’re saying rather than on how
you’re saying it. We present global style rules here so people know the
vocabulary, but local style is also important. If code you add to a file looks
drastically different from the existing code around it, it throws readers out of
their rhythm when they go to read it. Avoid this.

Revision 2.23

HTML Primer & Reference Guide 269

	Foreword
	Primer
	Create a Web-page
	Create an empty HTML page
	Open in a Text Editor
	Add <html> Tags
	Add head, body tags
	Add paragraph tags
	Add a Title
	Add a DTD
	Change your language
	utf8
	Text Editor utf8 issues
	Add some style
	A StyleSheet added
	{curly brackets}
	Getting boxy...

	Reference Guide:- HTML
	Block-Level Elements
	Inline Elements
	Other Elements
	Generic Attributes 4.01
	core-attributes:
	language-attributes:
	event-attributes:

	Character Entities
	html2 + Latin-1 Entities
	Mathematical, Greek and Symbolic Entities
	Special Entities

	a – Anchor
	id:
	href:
	name:
	(within-page links):

	abbr - Abbreviation
	acronym – Acronym
	address - Address
	applet - Java applet
	area - Image map region
	b - Bold text
	base - Document base url
	href:
	absolute v’s relative URI:
	applet & object:

	basefont - Base font change
	bdo - BiDi override
	big - Large text
	blockquote - Block quotation
	body - Document body
	frameset:

	br - Line break
	clear=(left|all|right|none):

	button - Button
	type=”...”:
	name:
	value:
	accesskey:

	caption - Table caption
	center - Centred block
	cite - Citation
	code - Computer code
	col - Table column
	colgroup - Table column group
	dd - Definition description
	del - Deleted text
	cite:
	datetime:
	title:

	dfn - Defined term
	dir - Directory list
	compact:

	div - Generic block-level container
	dl - Definition list
	the whole thing:

	doctype – Document Preamble
	Strict vs Transitional

	dt - Definition term
	em - Emphasis
	fieldset - Form control group
	font - Font change
	form - Interactive form
	method:
	enctype:

	frame – Frame
	name:

	frameset - Frameset
	how the W3C frames it:

	h1 - Level-one heading
	style:

	h2 - Level-two heading
	style:

	h3 - Level-three heading
	style:

	h4 - Level-four heading
	style:

	h5 - Level-five heading
	style:

	h6 - Level-six heading
	style:

	head - Document head
	profile:

	hr - Horizontal rule
	html - HTML document
	version:
	(optional tags):

	i - Italic text
	iframe - Inline frame
	img - Inline image
	alt:
	height:
	width:

	input - Form input
	id=”...”:
	name=”...”:
	namespaces:
	type=”button”:
	type=”reset”:
	type=”submit”:
	type=”checkbox”:
	type=”radio”:
	checked:
	value:
	type=”file”:
	accept:
	type=”hidden”:
	type=”image”:
	alt, usemap + src:
	type=”password”:
	type=”text”:
	maxlength + size:

	ins - Inserted text
	cite:
	datetime:
	title:

	isindex - Input prompt
	kbd - Text to be input
	label - Form field label
	for:
	id:

	legend - Fieldset caption
	li - List item
	type:
	value:

	link - Document relationship
	rel:
	rev:
	rel=apple-touch-icon:
	rel=shortcut icon:
	rel=StyleSheet:
	rel=alternate stylesheet:

	map – Image map
	menu - Menu list
	compact:

	meta – Metadata
	content:
	name:
	name=author:
	name=description:
	name=keywords:
	name=robots:
	http-equiv:
	http-equiv=Content-Type:
	http-equiv=Content-Script-Type:
	http-equiv=Content-Style-Type:
	http-equiv=Refresh:

	noframes - Frames alternate content
	how to hack-off your users:
	a guide to content:
	noframes in 4 Transitional:

	noscript - Alternate script content
	object – Object
	ol - Ordered list
	type:

	optgroup - Option group
	label:

	option - Menu option
	selected:
	value:

	p – Paragraph
	param - Object parameter
	id:
	name:

	pre - Pre-formatted text
	width:

	q - Short Quotation
	s - Strike-through text
	samp - Sample output
	script - Client-side script
	select - Option selector
	multiple:
	name:
	size:

	small - Small text
	span - Generic inline container
	strike - Strike-through text
	strong - Strong emphasis
	style - Embedded style sheet
	media:
	title:
	type:

	sub – Subscript
	sup – Superscript
	table – Table
	align:
	bgcolor:
	border:
	frame:
	cellpadding:
	cellspacing:
	width:
	The whole thing:

	tbody - Table body
	td - Table data cell
	abbr:
	axis:
	headers:
	scope:
	colspan:
	rowspan:

	textarea - Multi-line text input
	cols:
	rows:

	tfoot - Table foot
	th - Table header cell
	abbr:
	axis:
	headers:
	scope:
	colspan:
	rowspan:

	thead - Table head
	title - Document title
	tr - Table row
	tt - Teletype text
	u - Underlined text
	ul - Unordered list
	compact:
	type:
	The whole thing:

	var – Variable

	Reference Guide:- CSS
	Introduction
	Attaching Style/StyleSheets to a html document
	css Layout Model

	Box Properties
	border properties:
	border-width properties:
	margin properties:
	padding properties:

	Classification Properties
	Colour & Background Properties
	Notes:

	Font Properties
	Pseudo-classes & Pseudo-elements
	Text Properties
	Units
	Color Units:
	Length Units:
	Percentage Units:
	URLs:

	Property Value Syntax
	CSS Properties A – Z
	1st-line pseudo-element
	1st-letter pseudo-element
	Anchor pseudo-classes
	background
	background-attachment
	background-color
	background-image
	background-position
	background-repeat
	border
	border-bottom
	border-bottom-width
	border-color
	border-left
	border-left-width
	border-right
	border-right-width
	border-style
	border-top
	border-top-width
	border-width
	clear
	color
	display
	float
	font
	font-family
	font-size
	font-style
	font-variant
	font-weight
	height
	letter-spacing
	line-height
	list-style
	list-style-image
	list-style-postion
	list-style-type
	margin
	margin-bottom
	margin-left
	margin-right
	margin-top
	padding
	padding-bottom
	padding-left
	padding-right
	padding-top
	text-align
	text-decoration
	text-indent
	text-transform
	vertical-align
	width
	white-space
	word-spacing

	Miscellany
	Quirks Mode
	Column Layouts, css1
	Text grids using only css
	Accurate Superscript & Subscripts
	Google Guidelines for html & css

